TY - JOUR A1 - Sigel, Keith Magnus A1 - Swartz, Talia H. A1 - Golden, Eddye A1 - Paranjpe, Ishan A1 - Somani, Sulaiman A1 - Richter, Felix A1 - De Freitas, Jessica K. A1 - Miotto, Riccardo A1 - Zhao, Shan A1 - Polak, Paz A1 - Mutetwa, Tinaye A1 - Factor, Stephanie A1 - Mehandru, Saurabh A1 - Mullen, Michael A1 - Cossarini, Francesca A1 - Böttinger, Erwin A1 - Fayad, Zahi A1 - Merad, Miriam A1 - Gnjatic, Sacha A1 - Aberg, Judith A1 - Charney, Alexander A1 - Nadkarni, Girish A1 - Glicksberg, Benjamin S. T1 - Coronavirus 2019 and people living with human immunodeficiency virus BT - outcomes for hospitalized patients in New York City JF - Clinical infectious diseases : electronic edition N2 - Background: There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison group. Methods: We identified 88 PLWH hospitalized with laboratory-confirmed COVID-19 in our hospital system in New York City between 12 March and 23 April 2020. We collected data on baseline clinical characteristics, laboratory values, HIV status, treatment, and outcomes from this group and matched comparators (1 PLWH to up to 5 patients by age, sex, race/ethnicity, and calendar week of infection). We compared clinical characteristics and outcomes (death, mechanical ventilation, hospital discharge) for these groups, as well as cumulative incidence of death by HIV status. Results: Patients did not differ significantly by HIV status by age, sex, or race/ethnicity due to the matching algorithm. PLWH hospitalized with COVID-19 had high proportions of HIV virologic control on antiretroviral therapy. PLWH had greater proportions of smoking (P < .001) and comorbid illness than uninfected comparators. There was no difference in COVID-19 severity on admission by HIV status (P = .15). Poor outcomes for hospitalized PLWH were frequent but similar to proportions in comparators; 18% required mechanical ventilation and 21% died during follow-up (compared with 23% and 20%, respectively). There was similar cumulative incidence of death over time by HIV status (P = .94). Conclusions: We found no differences in adverse outcomes associated with HIV infection for hospitalized COVID-19 patients compared with a demographically similar patient group. KW - human immunodeficiency virus KW - coronavirus 2019 KW - severe acute respiratory KW - syndrome coronavirus 2 Y1 - 2020 U6 - https://doi.org/10.1093/cid/ciaa880 SN - 1058-4838 SN - 1537-6591 VL - 71 IS - 11 SP - 2933 EP - 2938 PB - Oxford Univ. Press CY - Cary, NC ER - TY - JOUR A1 - Vaid, Akhil A1 - Somani, Sulaiman A1 - Russak, Adam J. A1 - De Freitas, Jessica K. A1 - Chaudhry, Fayzan F. A1 - Paranjpe, Ishan A1 - Johnson, Kipp W. A1 - Lee, Samuel J. A1 - Miotto, Riccardo A1 - Richter, Felix A1 - Zhao, Shan A1 - Beckmann, Noam D. A1 - Naik, Nidhi A1 - Kia, Arash A1 - Timsina, Prem A1 - Lala, Anuradha A1 - Paranjpe, Manish A1 - Golden, Eddye A1 - Danieletto, Matteo A1 - Singh, Manbir A1 - Meyer, Dara A1 - O'Reilly, Paul F. A1 - Huckins, Laura A1 - Kovatch, Patricia A1 - Finkelstein, Joseph A1 - Freeman, Robert M. A1 - Argulian, Edgar A1 - Kasarskis, Andrew A1 - Percha, Bethany A1 - Aberg, Judith A. A1 - Bagiella, Emilia A1 - Horowitz, Carol R. A1 - Murphy, Barbara A1 - Nestler, Eric J. A1 - Schadt, Eric E. A1 - Cho, Judy H. A1 - Cordon-Cardo, Carlos A1 - Fuster, Valentin A1 - Charney, Dennis S. A1 - Reich, David L. A1 - Böttinger, Erwin A1 - Levin, Matthew A. A1 - Narula, Jagat A1 - Fayad, Zahi A. A1 - Just, Allan C. A1 - Charney, Alexander W. A1 - Nadkarni, Girish N. A1 - Glicksberg, Benjamin S. T1 - Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: model development and validation JF - Journal of medical internet research : international scientific journal for medical research, information and communication on the internet ; JMIR N2 - Background: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. Objective: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. Methods: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. Results: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. Conclusions: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes. KW - machine learning KW - COVID-19 KW - electronic health record KW - TRIPOD KW - clinical KW - informatics KW - prediction KW - mortality KW - EHR KW - cohort KW - hospital KW - performance Y1 - 2020 U6 - https://doi.org/10.2196/24018 SN - 1439-4456 SN - 1438-8871 VL - 22 IS - 11 PB - Healthcare World CY - Richmond, Va. ER - TY - JOUR A1 - Datta, Suparno A1 - Sachs, Jan Philipp A1 - Freitas da Cruz, Harry A1 - Martensen, Tom A1 - Bode, Philipp A1 - Morassi Sasso, Ariane A1 - Glicksberg, Benjamin S. A1 - Böttinger, Erwin T1 - FIBER BT - enabling flexible retrieval of electronic health records data for clinical predictive modeling JF - JAMIA open N2 - Objectives: The development of clinical predictive models hinges upon the availability of comprehensive clinical data. Tapping into such resources requires considerable effort from clinicians, data scientists, and engineers. Specifically, these efforts are focused on data extraction and preprocessing steps required prior to modeling, including complex database queries. A handful of software libraries exist that can reduce this complexity by building upon data standards. However, a gap remains concerning electronic health records (EHRs) stored in star schema clinical data warehouses, an approach often adopted in practice. In this article, we introduce the FlexIBle EHR Retrieval (FIBER) tool: a Python library built on top of a star schema (i2b2) clinical data warehouse that enables flexible generation of modeling-ready cohorts as data frames. Materials and Methods: FIBER was developed on top of a large-scale star schema EHR database which contains data from 8 million patients and over 120 million encounters. To illustrate FIBER's capabilities, we present its application by building a heart surgery patient cohort with subsequent prediction of acute kidney injury (AKI) with various machine learning models. Results: Using FIBER, we were able to build the heart surgery cohort (n = 12 061), identify the patients that developed AKI (n = 1005), and automatically extract relevant features (n = 774). Finally, we trained machine learning models that achieved area under the curve values of up to 0.77 for this exemplary use case. Conclusion: FIBER is an open-source Python library developed for extracting information from star schema clinical data warehouses and reduces time-to-modeling, helping to streamline the clinical modeling process. KW - databases KW - factual KW - electronic health records KW - information storage and KW - retrieval KW - workflow KW - software/instrumentation Y1 - 2021 U6 - https://doi.org/10.1093/jamiaopen/ooab048 SN - 2574-2531 VL - 4 IS - 3 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Dellepiane, Sergio A1 - Vaid, Akhil A1 - Jaladanki, Suraj K. A1 - Coca, Steven A1 - Fayad, Zahi A. A1 - Charney, Alexander W. A1 - Böttinger, Erwin A1 - He, John Cijiang A1 - Glicksberg, Benjamin S. A1 - Chan, Lili A1 - Nadkarni, Girish T1 - Acute kidney injury in patients hospitalized with COVID-19 in New York City BT - Temporal Trends From March 2020 to April 2021 T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 21 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585415 SN - 2590-0595 IS - 5 ER - TY - JOUR A1 - Vaid, Akhil A1 - Chan, Lili A1 - Chaudhary, Kumardeep A1 - Jaladanki, Suraj K. A1 - Paranjpe, Ishan A1 - Russak, Adam J. A1 - Kia, Arash A1 - Timsina, Prem A1 - Levin, Matthew A. A1 - He, John Cijiang A1 - Böttinger, Erwin A1 - Charney, Alexander W. A1 - Fayad, Zahi A. A1 - Coca, Steven G. A1 - Glicksberg, Benjamin S. A1 - Nadkarni, Girish N. T1 - Predictive approaches for acute dialysis requirement and death in COVID-19 JF - Clinical journal of the American Society of Nephrology : CJASN N2 - Background and objectives AKI treated with dialysis initiation is a common complication of coronavirus disease 2019 (COVID-19) among hospitalized patients. However, dialysis supplies and personnel are often limited. Design, setting, participants, & measurements Using data from adult patients hospitalized with COVID-19 from five hospitals from theMount Sinai Health System who were admitted between March 10 and December 26, 2020, we developed and validated several models (logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO), random forest, and eXtreme GradientBoosting [XGBoost; with and without imputation]) for predicting treatment with dialysis or death at various time horizons (1, 3, 5, and 7 days) after hospital admission. Patients admitted to theMount Sinai Hospital were used for internal validation, whereas the other hospitals formed part of the external validation cohort. Features included demographics, comorbidities, and laboratory and vital signs within 12 hours of hospital admission. Results A total of 6093 patients (2442 in training and 3651 in external validation) were included in the final cohort. Of the different modeling approaches used, XGBoost without imputation had the highest area under the receiver operating characteristic (AUROC) curve on internal validation (range of 0.93-0.98) and area under the precisionrecall curve (AUPRC; range of 0.78-0.82) for all time points. XGBoost without imputation also had the highest test parameters on external validation (AUROC range of 0.85-0.87, and AUPRC range of 0.27-0.54) across all time windows. XGBoost without imputation outperformed all models with higher precision and recall (mean difference in AUROC of 0.04; mean difference in AUPRC of 0.15). Features of creatinine, BUN, and red cell distribution width were major drivers of the model's prediction. Conclusions An XGBoost model without imputation for prediction of a composite outcome of either death or dialysis in patients positive for COVID-19 had the best performance, as compared with standard and other machine learning models. KW - COVID-19 KW - dialysis KW - machine learning KW - prediction KW - AKI Y1 - 2021 U6 - https://doi.org/10.2215/CJN.17311120 SN - 1555-9041 SN - 1555-905X VL - 16 IS - 8 SP - 1158 EP - 1168 PB - American Society of Nephrology CY - Washington ER - TY - JOUR A1 - De Freitas, Jessica K. A1 - Johnson, Kipp W. A1 - Golden, Eddye A1 - Nadkarni, Girish N. A1 - Dudley, Joel T. A1 - Böttinger, Erwin A1 - Glicksberg, Benjamin S. A1 - Miotto, Riccardo T1 - Phe2vec BT - Automated disease phenotyping based on unsupervised embeddings from electronic health records JF - Patterns N2 - Robust phenotyping of patients from electronic health records (EHRs) at scale is a challenge in clinical informatics. Here, we introduce Phe2vec, an automated framework for disease phenotyping from EHRs based on unsupervised learning and assess its effectiveness against standard rule-based algorithms from Phenotype KnowledgeBase (PheKB). Phe2vec is based on pre-computing embeddings of medical concepts and patients' clinical history. Disease phenotypes are then derived from a seed concept and its neighbors in the embedding space. Patients are linked to a disease if their embedded representation is close to the disease phenotype. Comparing Phe2vec and PheKB cohorts head-to-head using chart review, Phe2vec performed on par or better in nine out of ten diseases. Differently from other approaches, it can scale to any condition and was validated against widely adopted expert-based standards. Phe2vec aims to optimize clinical informatics research by augmenting current frameworks to characterize patients by condition and derive reliable disease cohorts. Y1 - 2021 U6 - https://doi.org/10.1016/j.patter.2021.100337 SN - 2666-3899 VL - 2 IS - 9 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dellepiane, Sergio A1 - Vaid, Akhil A1 - Jaladanki, Suraj K. A1 - Coca, Steven A1 - Fayad, Zahi A. A1 - Charney, Alexander W. A1 - Böttinger, Erwin A1 - He, John Cijiang A1 - Glicksberg, Benjamin S. A1 - Chan, Lili A1 - Nadkarni, Girish T1 - Acute kidney injury in patients hospitalized with COVID-19 in New York City BT - Temporal Trends From March 2020 to April 2021 JF - Kidney medicine Y1 - 2021 U6 - https://doi.org/10.1016/j.xkme.2021.06.008 SN - 2590-0595 VL - 3 IS - 5 SP - 877 EP - 879 PB - Elsevier CY - Amsterdam ER -