TY - JOUR A1 - Raddi, Roberto A1 - Hollands, M. A. A1 - Koester, D. A1 - Hermes, J. J. A1 - Gansicke, B. T. A1 - Heber, Ulrich A1 - Shen, Ken J. A1 - Townsley, D. M. A1 - Pala, Anna Francesca A1 - Reding, J. S. A1 - Toloza, O. F. A1 - Pelisoli, Ingrid Domingos A1 - Geier, Stephan Alfred A1 - Fusillo, Nicola Pietro Gentile A1 - Munari, Ullisse A1 - Strader, J. T1 - Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae JF - Monthly notices of the Royal Astronomical Society N2 - We report the discovery of three stars that, along with the prototype LP 40-365, form a distinct class of chemically peculiar runaway stars that are the survivors of thermonuclear explosions. Spectroscopy of the four confirmed LP 40-365 stars finds ONe-dominated atmospheres enriched with remarkably similar amounts of nuclear ashes of partial O- and Si-burning. Kinematic evidence is consistent with ejection from a binary supernova progenitor; at least two stars have rest-frame velocities indicating they are unbound to the Galaxy. With masses and radii ranging between 0.20 and 0.28M(circle dot) and between 0.16 and 0.60 R-circle dot, respectively, we speculate these inflated white dwarfs are the partly burnt remnants of either peculiar Type Iax or electron-capture supernovae. Adopting supernova rates from the literature, we estimate that similar to 20 LP 40-365 stars brighter than 19 mag should be detectable within 2 kpc from the Sun at the end of the Gaia mission. We suggest that as they cool, these stars will evolve in their spectroscopic appearance, and eventually become peculiar O-rich white dwarfs. Finally, we stress that the discovery of new LP 40-365 stars will be useful to further constrain their evolution, supplying key boundary conditions to the modelling of explosion mechanisms, supernova rates, and nucleosynthetic yields of peculiar thermonuclear explosions. KW - stars: individual: LP 40-365 KW - subdwarfs KW - supernovae: general KW - white dwarfs KW - Galaxy: kinematics and dynamics Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz1618 SN - 0035-8711 SN - 1365-2966 VL - 489 IS - 2 SP - 1489 EP - 1508 PB - Oxford Univ. Press CY - Oxford ER -