TY - JOUR A1 - Tian, Mei A1 - Reichetzeder, Christoph A1 - Li, Jian A1 - Hocher, Berthold T1 - Low birth weight, a risk factor for diseases in later life, is a surrogate of insulin resistance at birth JF - Journal of hypertension N2 - Low birth weight (LBW) is associated with diseases in adulthood. The birthweight attributed risk is independent of confounding such as gestational age, sex of the newborn but also social factors. The birthweight attributed risk for diseases in later life holds for the whole spectrum of birthweight. This raises the question what pathophysiological principle is actually behind the association. In this review, we provide evidence that LBW is a surrogate of insulin resistance. Insulin resistance has been identified as a key factor leading to type 2 diabetes, cardiovascular disease as well as kidney diseases. We first provide evidence linking LBW to insulin resistance during intrauterine life. This might be caused by both genetic (genetic variations of genes controlling glucose homeostasis) and/or environmental factors (due to alterations of macronutrition and micronutrition of the mother during pregnancy, but also effects of paternal nutrition prior to conception) leading via epigenetic modifications to early life insulin resistance and alterations of intrauterine growth, as insulin is a growth factor in early life. LBW is rather a surrogate of insulin resistance in early life - either due to inborn genetic or environmental reasons - rather than a player on its own. KW - epigenetics KW - fetal programing KW - genetics KW - insulin resistance KW - low birth weight Y1 - 2019 U6 - https://doi.org/10.1097/HJH.0000000000002156 SN - 0263-6352 SN - 1473-5598 VL - 37 IS - 11 SP - 2123 EP - 2134 PB - Kluwer CY - Philadelphia ER - TY - JOUR A1 - Gerecke, Christian A1 - Schumacher, Fabian A1 - Berndzen, Alide A1 - Homann, Thomas A1 - Kleuser, Burkhard T1 - Vitamin C in combination with inhibition of mutant IDH1 synergistically activates TET enzymes and epigenetically modulates gene silencing in colon cancer cells JF - Epigenetics : the official journal of the DNA Methylation Society N2 - Mutations in the enzyme isocitrate dehydrogenase 1 (IDH1) lead to metabolic alterations and a sustained formation of 2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite as it inhibits the activity of alpha-ketoglutarate-dependent dioxygenases such as ten-eleven translocation (TET) enzymes. Inhibitors of mutant IDH enzymes, like ML309, are currently tested in order to lower the levels of 2-HG. Vitamin C (VC) is an inducer of TET enzymes. To test a new therapeutic avenue of synergistic effects, the anti-neoplastic activity of inhibition of mutant IDH1 via ML309 in the presence of VC was investigated in the colon cancer cell line HCT116 IDH1(R132H/+) (harbouring a mutated IDH1 allele) and the parental cells HCT116 IDH1(+/+) (wild type IDH1). Measurement of the oncometabolite indicated a 56-fold higher content of 2-HG in mutated cells compared to wild type cells. A significant reduction of 2-HG was observed in mutated cells after treatment with ML 309, whereas VC produced only minimally changes of the oncometabolite. However, combinatorial treatment with both, ML309 and VC, in mutated cells induced pronounced reduction of 2-HG leading to levels comparable to those in wild type cells. The decreased level of 2-HG in mutated cells after combinatorial treatment was accompanied by an enhanced global DNA hydroxymethylation and an increased gene expression of certain tumour suppressors. Moreover, mutated cells showed an increased percentage of apoptotic cells after treatment with non-cytotoxic concentrations of ML309 and VC. These results suggest that combinatorial therapy is of interest for further investigation to rescue TET activity and treatment of IDH1/2 mutated cancers. KW - Vitamin C KW - epigenetics KW - IDH1 KW - TET KW - cancer cells Y1 - 2019 U6 - https://doi.org/10.1080/15592294.2019.1666652 SN - 1559-2294 SN - 1559-2308 VL - 15 IS - 3 SP - 307 EP - 322 PB - Taylor & Francis Group CY - Philadelphia ER - TY - JOUR A1 - Herden, Jasmin A1 - Eckert, Silvia A1 - Stift, Marc A1 - Joshi, Jasmin Radha A1 - van Kleunen, Mark T1 - No evidence for local adaptation and an epigenetic underpinning in native and non-native ruderal plant species in Germany JF - Ecology and evolution N2 - Many invasive species have rapidly adapted to different environments in their new ranges. This is surprising, as colonization is usually associated with reduced genetic variation. Heritable phenotypic variation with an epigenetic basis may explain this paradox. Here, we assessed the contribution of DNA methylation to local adaptation in native and naturalized non-native ruderal plant species in Germany. We reciprocally transplanted offspring from natural populations of seven native and five non-native plant species between the Konstanz region in the south and the Potsdam region in the north of Germany. Before the transplant, half of the seeds were treated with the demethylation agent zebularine. We recorded survival, flowering probability, and biomass production as fitness estimates. Contrary to our expectations, we found little evidence for local adaptation, both among the native and among the non-native plant species. Zebularine treatment had mostly negative effects on overall plant performance, regardless of whether plants were local or not, and regardless of whether they were native or non-native. Synthesis. We conclude that local adaptation, at least at the scale of our study, plays no major role in the success of non-native and native ruderal plants. Consequently, we found no evidence yet for an epigenetic basis of local adaptation. KW - biological invasions KW - epigenetics KW - local adaptation KW - reciprocal transplant experiment KW - ruderal plant species KW - zebularine Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5325 SN - 2045-7758 VL - 9 IS - 17 SP - 9412 EP - 9426 PB - Wiley CY - Hoboken ER -