TY - JOUR A1 - Eccard, Jana A1 - Scheffler, Ingo A1 - Franke, Steffen A1 - Hoffmann, Julia T1 - Off-grid BT - solar powered LED illumination impacts epigeal arthropods JF - Insect conservation and diversity N2 - 1. Advances in LED technology combined with solar, storable energy bring light to places remote from electricity grids. Worldwide more than 1.3 billion of people are living off-grid, often in developing regions of high insect biodiversity. In developed countries, dark refuges for wildlife are threatened by ornamental garden lights. Solar powered LEDs (SPLEDs) are cheaply available, dim, and often used to illuminate foot paths, but little is known on their effects on ground living (epigeal) arthropods. 2. We used off-the-shelf garden lamps with a single ‘white’ LED (colour temperature 7250 K) to experimentally investigate effects on attraction and nocturnal activity of ground beetles (Carabidae). 3. We found two disparate and species-specific effects of SPLEDs. (i) Some nocturnal, phototactic species were not reducing activity under illumination and were strongly attracted to lamps (>20-fold increase in captures compared to dark controls). Such species aggregate in lit areas and SPLEDs may become ecological traps, while the species is drawn from nearby, unlit assemblages. (ii) Other nocturnal species were reducing mobility and activity under illumination without being attracted to light, which may cause fitness reduction in lit areas. 4. Both reactions offer mechanistic explanations on how outdoor illumination can change population densities of specific predatory arthropods, which may have cascading effects on epigeal arthropod assemblages. The technology may thus increase the area of artificial light at night (ALAN) impacting insect biodiversity. 5. Measures are needed to mitigate effects, such as adjustment of light colour temperature and automated switch-offs. KW - Artificial light at night (ALAN) KW - Carabidae KW - illuminance KW - light pollution KW - light spectrum KW - nocturnal epigeal insect KW - phototaxis KW - solar powered light-emitting diode KW - spectral irradiance KW - white light Y1 - 2018 U6 - https://doi.org/10.1111/icad.12303 SN - 1752-458X SN - 1752-4598 VL - 11 IS - 6 SP - 600 EP - 607 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kaunath, Vera A1 - Eccard, Jana T1 - Light Attraction in Carabid Beetles BT - Comparison Among Animals From the Inner City and a Dark Sky Reserve JF - Frontiers in Ecology and Evolution N2 - Artificial light at night (ALAN) is altering the behaviour of nocturnal animals in a manifold of ways. Nocturnal invertebrates are particularly affected, due to their fatal attraction to ALAN. This selective pressure has the potential to reduce the strength of the flight-to-light response in insects, as shown recently in a moth species. Here we investigated light attraction of ground beetles (Coleoptera: Carabidae).We compared among animals (three genera) from a highly light polluted (HLP) grassland in the centre of Berlin and animals collected at a low-polluted area in a Dark Sky Reserve (DSR), captured using odour bait. In an arena setting tested at night time, HLP beetles (n = 75 across all genera) showed a reduced attraction towards ALAN. Tested during daytime, HLP beetles were less active in an open field test (measured as latency to start moving), compared to DSR (n = 143). However, we did not observe a reduced attraction towards ALAN within the species most common at both sides, Calathus fuscipes (HLP = 37, DSR = 118 individuals) indicating that not all species may be equally affected by ALAN. Reduced attraction to ALAN in urban beetles may either be a result of phenotypic selection in each generation removing HLP individuals that are attracted to light, or an indication for ongoing evolutionary differentiation among city and rural populations in their light response. Reduced attraction to light sources may directly enhance survival and reproductive success of urban individuals. However, decrease in mobility may negatively influence dispersal, reproduction and foraging success, highlighting the selective pressure that light pollution may have on fitness, by shaping and modifying the behaviour of insects. KW - light pollution KW - artificial light at night (ALAN) KW - Carabidae beetles KW - environmental change KW - Illuminance KW - solar powered light-emitting diode Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.751288 SN - 2296-701X N1 - VK and JE designed the experimental set up and research question. VK performed the animal trapping, experiments and hence, data collection, and organizing of the database. Both authors performed the statistical analyses and contributed to discussion, manuscript revision, read, and approved the submitted version. VL - 10 PB - Frontiers Media CY - Lausanne, Schweiz ER - TY - GEN A1 - Kaunath, Vera A1 - Eccard, Jana T1 - Light Attraction in Carabid Beetles BT - Comparison Among Animals From the Inner City and a Dark Sky Reserve T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Artificial light at night (ALAN) is altering the behaviour of nocturnal animals in a manifold of ways. Nocturnal invertebrates are particularly affected, due to their fatal attraction to ALAN. This selective pressure has the potential to reduce the strength of the flight-to-light response in insects, as shown recently in a moth species. Here we investigated light attraction of ground beetles (Coleoptera: Carabidae).We compared among animals (three genera) from a highly light polluted (HLP) grassland in the centre of Berlin and animals collected at a low-polluted area in a Dark Sky Reserve (DSR), captured using odour bait. In an arena setting tested at night time, HLP beetles (n = 75 across all genera) showed a reduced attraction towards ALAN. Tested during daytime, HLP beetles were less active in an open field test (measured as latency to start moving), compared to DSR (n = 143). However, we did not observe a reduced attraction towards ALAN within the species most common at both sides, Calathus fuscipes (HLP = 37, DSR = 118 individuals) indicating that not all species may be equally affected by ALAN. Reduced attraction to ALAN in urban beetles may either be a result of phenotypic selection in each generation removing HLP individuals that are attracted to light, or an indication for ongoing evolutionary differentiation among city and rural populations in their light response. Reduced attraction to light sources may directly enhance survival and reproductive success of urban individuals. However, decrease in mobility may negatively influence dispersal, reproduction and foraging success, highlighting the selective pressure that light pollution may have on fitness, by shaping and modifying the behaviour of insects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1259 KW - light pollution KW - artificial light at night (ALAN) KW - Carabidae beetles KW - environmental change KW - Illuminance KW - solar powered light-emitting diode Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559104 SN - 1866-8372 N1 - VK and JE designed the experimental set up and research question. VK performed the animal trapping, experiments and hence, data collection, and organizing of the database. Both authors performed the statistical analyses and contributed to discussion, manuscript revision, read, and approved the submitted version. ER -