TY - GEN A1 - Nikoloski, Zoran A1 - van Dongen, Joost T. T1 - Modeling alternatives for interpreting the change in oxygen-consumption rates during hypoxic conditions T2 - New phytologist : international journal of plant science KW - hypoxia KW - modeling KW - regulation KW - respiration KW - roots Y1 - 2011 U6 - https://doi.org/10.1111/j.1469-8137.2011.03674.x SN - 0028-646X VL - 190 IS - 2 SP - 273 EP - 276 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Nikoloski, Zoran A1 - Sweetlove, Lee J. A1 - Fernie, Alisdair R. T1 - Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given. KW - metabolic control analysis KW - metabolic regulation KW - respiration KW - Solanum lycopersicum (tomato) KW - TCA cycle Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3040.2011.02332.x SN - 0140-7791 VL - 35 IS - 1 SP - 1 EP - 21 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Jose Clemente-Moreno, Maria A1 - Omranian, Nooshin A1 - Saez, Patricia A1 - Maria Figueroa, Carlos A1 - Del-Saz, Nestor A1 - Elso, Mhartyn A1 - Poblete, Leticia A1 - Orf, Isabel A1 - Cuadros-Inostroza, Alvaro A1 - Cavieres, Lohengrin A1 - Bravo, Leon A1 - Fernie, Alisdair R. A1 - Ribas-Carbo, Miquel A1 - Flexas, Jaume A1 - Nikoloski, Zoran A1 - Brotman, Yariv A1 - Gago, Jorge T1 - Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis JF - New phytologist : international journal of plant science N2 - Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23 degrees C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88%) but not in respiration (sustaining rates of 3.0-4.2 mu mol CO2 m(-2) s(-1)) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature. KW - Antarctica KW - antioxidant capacity KW - low temperature KW - photosynthesis KW - respiration KW - stress tolerance KW - sulphur metabolism Y1 - 2019 U6 - https://doi.org/10.1111/nph.16167 SN - 0028-646X SN - 1469-8137 VL - 225 IS - 2 SP - 754 EP - 768 PB - Wiley CY - Hoboken ER -