TY - GEN A1 - Nikoloski, Zoran A1 - van Dongen, Joost T. T1 - Modeling alternatives for interpreting the change in oxygen-consumption rates during hypoxic conditions T2 - New phytologist : international journal of plant science KW - hypoxia KW - modeling KW - regulation KW - respiration KW - roots Y1 - 2011 U6 - https://doi.org/10.1111/j.1469-8137.2011.03674.x SN - 0028-646X VL - 190 IS - 2 SP - 273 EP - 276 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Nikoloski, Zoran A1 - Sweetlove, Lee J. A1 - Fernie, Alisdair R. T1 - Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given. KW - metabolic control analysis KW - metabolic regulation KW - respiration KW - Solanum lycopersicum (tomato) KW - TCA cycle Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3040.2011.02332.x SN - 0140-7791 VL - 35 IS - 1 SP - 1 EP - 21 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Frank, Ulrike A1 - Czepluch, C. A1 - Sticher, H. A1 - Maetzener, F. A1 - Schlaegel, W. A1 - Mäder, M. T1 - Modifiziertes Trachealkanülenmanagement - Platzhaltereinsatz als Option bei erschwerten Dekanülierungen (Pilotprojekt REHAB Basel) JF - Die Rehabilitation : Zeitschrift für Praxis und Forschung in der Rehabilitation N2 - Tracheotomierte Patienten, die sowohl eine Dysphagie als auch respiratorische Defizite aufweisen, haben nach der Dekanülierung häufig Probleme, sich an die translaryngeale Atmung anzupassen. Wir entwickelten ein Dekanülierungsprotokoll für diese Patientengruppe, das optional in unser bestehendes Trachealkanülenmanagement integriert werden kann. Erfüllt ein Patient die hierfür definierten Kriterien, so erfolgt unter laryngoskopischer Kontrolle die Einlage eines Platzhalters, der bis zu 3 Tage in situ verbleibt. Während dieser Probedekanülierungsphase werden die respiratorischen Funktionen und das Speichelmanagement engmaschig überwacht. Auf der Grundlage dieser Evaluation wird dann die Entscheidung für oder gegen eine endgültige Dekanülierung getroffen. Wir stellen den Ablauf, die Kriterienkataloge und die Evaluationsparameter für diese Probedekanülierungsphase vor und illustrieren den Ablauf anhand von 2 Fallbeispielen. KW - decannulation protocol KW - dilatational tracheostomy KW - stoma button KW - respiration KW - dysphagia Y1 - 2013 U6 - https://doi.org/10.1055/s-0032-1306290 SN - 0034-3536 VL - 52 IS - 1 SP - 20 EP - 26 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Kamranfar, Iman A1 - Xue, Gang-Ping A1 - Tohge, Takayuki A1 - Sedaghatmehr, Mastoureh A1 - Fernie, Alisdair R. A1 - Balazadeh, Salma A1 - Mueller-Roeber, Bernd T1 - Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence JF - New phytologist : international journal of plant science N2 - Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy. KW - Arabidopsis KW - fatty acid KW - primary metabolism KW - protein and amino acid degradation KW - respiration KW - senescence Y1 - 2018 U6 - https://doi.org/10.1111/nph.15127 SN - 0028-646X SN - 1469-8137 VL - 218 IS - 4 SP - 1543 EP - 1557 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Jose Clemente-Moreno, Maria A1 - Omranian, Nooshin A1 - Saez, Patricia A1 - Maria Figueroa, Carlos A1 - Del-Saz, Nestor A1 - Elso, Mhartyn A1 - Poblete, Leticia A1 - Orf, Isabel A1 - Cuadros-Inostroza, Alvaro A1 - Cavieres, Lohengrin A1 - Bravo, Leon A1 - Fernie, Alisdair R. A1 - Ribas-Carbo, Miquel A1 - Flexas, Jaume A1 - Nikoloski, Zoran A1 - Brotman, Yariv A1 - Gago, Jorge T1 - Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis JF - New phytologist : international journal of plant science N2 - Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23 degrees C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88%) but not in respiration (sustaining rates of 3.0-4.2 mu mol CO2 m(-2) s(-1)) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature. KW - Antarctica KW - antioxidant capacity KW - low temperature KW - photosynthesis KW - respiration KW - stress tolerance KW - sulphur metabolism Y1 - 2019 U6 - https://doi.org/10.1111/nph.16167 SN - 0028-646X SN - 1469-8137 VL - 225 IS - 2 SP - 754 EP - 768 PB - Wiley CY - Hoboken ER - TY - THES A1 - Guislain, Alexis T1 - Eco-physiological consequences of fluctuating light on phytoplankton T1 - Ökophysiologische Konsequenzen von fluktuierendem Licht auf das Phytoplankton N2 - Phytoplankton growth depends not only on the mean intensity but also on the dynamics of the light supply. The nonlinear light-dependency of growth is characterized by a small number of basic parameters: the compensation light intensity PARcompμ, where production and losses are balanced, the growth efficiency at sub-saturating light αµ, and the maximum growth rate at saturating light µmax. In surface mixed layers, phytoplankton may rapidly move between high light intensities and almost darkness. Because of the different frequency distribution of light and/or acclimation processes, the light-dependency of growth may differ between constant and fluctuating light. Very few studies measured growth under fluctuating light at a sufficient number of mean light intensities to estimate the parameters of the growth-irradiance relationship. Hence, the influence of light dynamics on µmax, αµ and PARcompμ are still largely unknown. By extension, accurate modelling predictions of phytoplankton development under fluctuating light exposure remain difficult to make. This PhD thesis does not intend to directly extrapolate few experimental results to aquatic systems – but rather improving the mechanistic understanding of the variation of the light-dependency of growth under light fluctuations and effects on phytoplankton development. In Lake TaiHu and at the Three Gorges Reservoir (China), we incubated phytoplankton communities in bottles placed either at fixed depths or moved vertically through the water column to mimic vertical mixing. Phytoplankton at fixed depths received only the diurnal changes in light (defined as constant light regime), while phytoplankton received rapidly fluctuating light by superimposing the vertical light gradient on the natural sinusoidal diurnal sunlight. The vertically moved samples followed a circular movement with 20 min per revolution, replicating to some extent the full overturn of typical Langmuir cells. Growth, photosynthesis, oxygen production and respiration of communities (at Lake TaiHu) were measured. To complete these investigations, a physiological experiment was performed in the laboratory on a toxic strain of Microcystis aeruginosa (FACBH 1322) incubated under 20 min period fluctuating light. Here, we measured electron transport rates and net oxygen production at a much higher time resolution (single minute timescale). The present PhD thesis provides evidence for substantial effects of fluctuating light on the eco-physiology of phytoplankton. Both experiments performed under semi-natural conditions in Lake TaiHu and at the Three Gorges Reservoir gave similar results. The significant decline in community growth efficiencies αµ under fluctuating light was caused for a great share by different frequency distribution of light intensities that shortened the effective daylength for production. The remaining gap in community αµ was attributed to species-specific photoacclimation mechanisms and to light-dependent respiratory losses. In contrast, community maximal growth rates µmax were similar between incubations at constant and fluctuating light. At daily growth saturating light supply, differences in losses for biosynthesis between the two light regimes were observed. Phytoplankton experiencing constant light suffered photo-inhibition - leading to photosynthesis foregone and additional respiratory costs for photosystems repair. On the contrary, intermittent exposure to low and high light intensities prevented photo-inhibition of mixed algae but forced them to develop alternative light strategy. They better harvested and exploited surface irradiance by enhancing their photosynthesis. In the laboratory, we showed that Microcystis aeruginosa increased its oxygen consumption by dark respiration in the light few minutes only after exposure to increasing light intensities. More, we proved that within a simulated Langmuir cell, the net production at saturating light and the compensation light intensity for production at limiting light are positively related. These results are best explained by an accumulation of photosynthetic products at increasing irradiance and mobilization of these fresh resources by rapid enhancement of dark respiration for maintenance and biosynthesis at decreasing irradiance. At the daily timescale, we showed that the enhancement of photosynthesis at high irradiance for biosynthesis of species increased their maintenance respiratory costs at limiting light. Species-specific growth at saturating light µmax and compensation light intensity for growth PARcompμ of species incubated in Lake TaiHu were positively related. Because of this species-specific physiological tradeoff, species displayed different light affinities to limiting and saturating light - thereby exhibiting a gleaner-opportunist tradeoff. In Lake TaiHu, we showed that inter-specific differences in light acquisition traits (µmax and PARcompμ) allowed coexis¬tence of species on a gradient of constant light while avoiding competitive exclusion. More interestingly we demonstrated for the first time that vertical mixing (inducing fluctuating light supply for phytoplankton) may alter or even reverse the light utilization strategies of species within couple of days. The intra-specific variation in traits under fluctuating light increased the niche space for acclimated species, precluding competitive exclusion. Overall, this PhD thesis contributes to a better understanding of phytoplankton eco-physiology under fluctuating light supply. This work could enhance the quality of predictions of phytoplankton development under certain weather conditions or climate change scenarios. N2 - Das Wachstum von Phytoplankton hängt ab nicht nur von der mittleren Intensität, sondern auch von der Dynamik des verfügbaren Lichts. Die nicht-lineare Lichtabhängigkeit des Wachstums kann durch drei Parameter beschrieben werden: die Kompensationslichtintensität PARcompµ, bei der Bruttoproduktion und Verluste gleich sind, die Wachstumseffizienz bei Lichtlimitation αµ und die maximale Wachstumsrate bei sättigendem Licht µmax. In durchmischten Schichten nahe der Gewässeroberfläche kann das Phytoplankton innerhalb weniger Minuten zwischen Starklicht und nahezu völliger Dunkelheit bewegt werden. Durch die unterschiedliche Häufigkeitsverteilung der Lichtintensitäten und/oder unterschiedliche Anpassungen kann die Lichtabhängigkeit des Wachstums sich bei fluktuierendem Licht von dem bei konstantem Licht unterscheiden. Bislang wurde die Lichtabhängigkeit des Wachstums bei fluktuierendem Licht nur in sehr wenigen Studien für genügend viele Lichtintensitäten gemessen, um die genannten Parameter bestimmen zu können. Entsprechend ist der Einfluss der Lichtdynamik auf die Parameter der Wachstums-Licht-Beziehung noch weitgehend unbekannt. Dies beeinträchtigt auch die Zuverlässigkeit von Modellaussagen zur Phytoplanktondynamik unter Durchmischungsbedingungen. In dieser Dissertation sollen die experimentell gewonnenen Ergebnisse nicht auf ganze Ökosysteme extrapoliert werden; Ziel ist vielmehr ein verbessertes Verständnis der Prozesse, die die Lichtabhängigkeit des Phytoplanktonwachstums unter dynamischen Lichtbedingungen steuern. Hierzu wurden im Tai-See und im Dreischluchten-Stausee (China) Experimente mit Phytoplanktongemeinschaften durchgeführt. Es wurden Proben entweder in konstanten Tiefen exponiert oder mit Liften vertikal zwischen Wasseroberfläche und verschiedenen Tiefen bewegt. Während das Lichtangebot in konstanten Tiefen nur dem Tagesgang der Globalstrahlung folgte (hier als konstantes Licht bezeichnet), war das Phytoplankton in den bewegten Proben zusätzlich raschen Lichtfluktuationen ausgesetzt. Mit der Liftbewegung wurden mittlere Bedingungen in den Außenbahnen von Langmuir-Zellen simuliert, wobei eine Umlaufzeit von 20 Minuten gewählt wurde. Es wurden Wachstum, Photosynthese und (im Tai-See) Respiration gemessen. Zusätzlich wurde in Laborversuchen mit einem toxischen Stamm des Cyanobakteriums Microcystis aeruginosa (FACBH 1322) unter fluktuierendem und konstantem Licht Elektronentransportraten sowie Produktion und Verbrauch von Sauerstoff mit höherer zeitlicher Auflösung (1 min) gemessen. Die Ergebnisse der vorliegenden Dissertation demonstrieren bedeutsame Effekte von Lichtfluktuationen auf die Ökophysiologie von Phytoplankton. Die Experimente unter halb-natürlichen Bedingungen im Tai-See und im Dreischluchten-Stausee zeigten ähnliche Muster. Die Wachstumseffizienz der Gemeinschaften nahm durch fluktuierendes Licht deutlich ab, überwiegend durch die veränderte Häufigkeitsverteilung der Lichtintensitäten, die zu verkürzten effektiven Taglängen führte. Zudem verringerten artspezifische Anpassungsmechanismen und lichtabhängige Verluste durch Respiration die Wachstumseffizienz bei fluktuierendem Licht. Die maximalen Wachstumsraten der Gemeinschaft unterschieden sich hingegen nicht zwischen den Ansätzen mit konstantem und fluktuierendem Licht. Bei Lichtsättigung des Wachstums unterschieden sich die Aufwendungen für die Biosynthese zwischen den beiden Lichtregimen. Unter konstantem Starklicht wurden die Photosynthese gehemmt und die Respiration zur Reparatur der Photosysteme erhöht. Fluktuierendes Licht hingegen vermied Lichthemmung, zwang die vertikal bewegten Algen aber zu alternativen Strategien der Lichtnutzung. Durch eine erhöhte Photosynthesekapazität konnten sie Starklicht nahe der Wasseroberfläche besser nutzen. Microcystis aeruginosa verbrauchte im Labor mehr Sauerstoff durch Respiration bei abnehmenden Lichtintensitäten kurz nach Starklicht. Innerhalb eines Lichtzyklus von 20 min stieg die Kompensationslichtintensität mit steigender Nettoproduktion bei Lichtsättigung. Diese Beobachtungen sind am besten durch eine Anreicherung von Photosyntheseprodukten bei ansteigender Lichtintensität und deren sofortige verstärkte Respiration für Erhaltungsumsatz und Biosynthese bei abnehmender Lichtintensität erklärbar. Im Tagesmittel führte eine verstärkte Photosynthese bei Lichtsättigung zu erhöhter Respiration bei Schwachlicht. Die Kompensationslichtintensitäten dominanter Arten im Tai-See stiegen mit deren artspezifischen maximalen Wachstumsraten. Durch diesen artspezifischen physiologischen Kompromiss unterschieden sich die dominanten Arten im See bezüglich ihrer Lichtoptima. Unterschiedliche Strategien der Lichtnutzung (höhere maximale Wachstumsraten oder niedrigere Lichtansprüche) ermöglichten die Koexistenz verschiedener Arten entlang eines Gradienten der Intensität konstanten Lichts im Tai-See. Durch vertikale Durchmischung änderten sich die Strategien der Lichtnutzung innerhalb weniger Tage komplett. Die unterschiedlichen Anpassungsstrategien an fluktuierendes Licht vergrößerten die ökologischen Nischen der dominanten Arten und verhinderten ihre gegenseitige Verdrängung. Insgesamt trägt diese Dissertation zum besseren Verständnis der Ökophysiologie von Phytoplankton unter Durchmischungsbedingungen bei. Dadurch werden verlässlichere Prognosen der Phytoplanktonentwicklung möglich, kurzzeitig in Kombination mit Wettervorhersagen und über lange Zeiträume durch Kopplung mit Klimaszenarien. KW - Lake TaiHu KW - Three Gorges reservoir KW - functional traits KW - tradeoff KW - fluctuating light KW - pPhytoplankton photoacclimation KW - effective daylength KW - photosynthesis KW - respiration KW - niche partitioning KW - non-equilibrium coexistence KW - TaiHu KW - Dreischluchten-Stausee KW - funktionelle Eigenschaften KW - Zielkonflikte KW - fluktuierendes Licht KW - Lichtanpassung KW - Photosynthese KW - Respiration KW - Nischen-Aufteilung KW - Koexistenz unter wechselnden Bedingungen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469272 ER -