TY - JOUR A1 - Tranter, Morgan Alan A1 - De Lucia, Marco A1 - Wolfgramm, Markus A1 - Kühn, Michael T1 - Barite scale formation and injectivity loss models for geothermal systems JF - Water N2 - Barite scales in geothermal installations are a highly unwanted effect of circulating deep saline fluids. They build up in the reservoir if supersaturated fluids are re-injected, leading to irreversible loss of injectivity. A model is presented for calculating the total expected barite precipitation. To determine the related injectivity decline over time, the spatial precipitation distribution in the subsurface near the injection well is assessed by modelling barite growth kinetics in a radially diverging Darcy flow domain. Flow and reservoir properties as well as fluid chemistry are chosen to represent reservoirs subject to geothermal exploration located in the North German Basin (NGB) and the Upper Rhine Graben (URG) in Germany. Fluids encountered at similar depths are hotter in the URG, while they are more saline in the NGB. The associated scaling amount normalised to flow rate is similar for both regions. The predicted injectivity decline after 10 years, on the other hand, is far greater for the NGB (64%) compared to the URG (24%), due to the temperature- and salinity-dependent precipitation rate. The systems in the NGB are at higher risk. Finally, a lightweight score is developed for approximating the injectivity loss using the Damkohler number, flow rate and total barite scaling potential. This formula can be easily applied to geothermal installations without running complex reactive transport simulations. KW - reactive transport KW - radial flow KW - geothermal energy KW - scaling KW - phreeqc KW - formation damage Y1 - 2020 U6 - https://doi.org/10.3390/w12113078 SN - 2073-4441 VL - 12 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tranter, Morgan Alan A1 - De Lucia, Marco A1 - Kühn, Michael T1 - Barite scaling potential modelled for fractured-porous geothermal reservoirs JF - Minerals N2 - Barite scalings are a common cause of permanent formation damage to deep geothermal reservoirs. Well injectivity can be impaired because the ooling of saline fluids reduces the solubility of barite, and the continuous re-injection of supersaturated fluids forces barite to precipitate in the host rock. Stimulated reservoirs in the Upper Rhine Graben often have multiple relevant flow paths in the porous matrix and fracture zones, sometimes spanning multiple stratigraphical units to achieve the economically necessary injectivity. While the influence of barite scaling on injectivity has been investigated for purely porous media, the role of fractures within reservoirs consisting of both fractured and porous sections is still not well understood. Here, we present hydro-chemical simulations of a dual-layer geothermal reservoir to study the long-term impact of barite scale formation on well injectivity. Our results show that, compared to purely porous reservoirs, fractured porous reservoirs have a significantly reduced scaling risk by up to 50%, depending on the flow rate ratio of fractures. Injectivity loss is doubled, however, if the amount of active fractures is increased by one order of magnitude, while the mean fracture aperture is decreased, provided the fractured aquifer dictates the injection rate. We conclude that fractured, and especially hydraulically stimulated, reservoirs are generally less affected by barite scaling and that large, but few, fractures are favourable. We present a scaling score for fractured-porous reservoirs, which is composed of easily derivable quantities such as the radial equilibrium length and precipitation potential. This score is suggested for use approximating the scaling potential and its impact on injectivity of a fractured-porous reservoir for geothermal exploitation. KW - reactive transport KW - radial flow KW - geothermal energy KW - injectivity KW - phreeqc KW - formation damage Y1 - 2021 U6 - https://doi.org/10.3390/min11111198 SN - 2075-163X VL - 11 IS - 11 PB - MDPI CY - Basel ER - TY - THES A1 - Tranter, Morgan Alan T1 - Numerical quantification of barite reservoir scaling and the resulting injectivity loss in geothermal systems N2 - Due to the major role of greenhouse gas emissions in global climate change, the development of non-fossil energy technologies is essential. Deep geothermal energy represents such an alternative, which offers promising properties such as a high base load capability and a large untapped potential. The present work addresses barite precipitation within geothermal systems and the associated reduction in rock permeability, which is a major obstacle to maintaining high efficiency. In this context, hydro-geochemical models are essential to quantify and predict the effects of precipitation on the efficiency of a system. The objective of the present work is to quantify the induced injectivity loss using numerical and analytical reactive transport simulations. For the calculations, the fractured-porous reservoirs of the German geothermal regions North German Basin (NGB) and Upper Rhine Graben (URG) are considered. Similar depth-dependent precipitation potentials could be determined for both investigated regions (2.8-20.2 g/m3 fluid). However, the reservoir simulations indicate that the injectivity loss due to barite deposition in the NGB is significant (1.8%-6.4% per year) and the longevity of the system is affected as a result; this is especially true for deeper reservoirs (3000 m). In contrast, simulations of URG sites indicate a minor role of barite (< 0.1%-1.2% injectivity loss per year). The key differences between the investigated regions are reservoir thicknesses and the presence of fractures in the rock, as well as the ionic strength of the fluids. The URG generally has fractured-porous reservoirs with much higher thicknesses, resulting in a greater distribution of precipitates in the subsurface. Furthermore, ionic strengths are higher in the NGB, which accelerates barite precipitation, causing it to occur more concentrated around the wellbore. The more concentrated the precipitates occur around the wellbore, the higher the injectivity loss. In this work, a workflow was developed within which numerical and analytical models can be used to estimate and quantify the risk of barite precipitation within the reservoir of geothermal systems. A key element is a newly developed analytical scaling score that provides a reliable estimate of induced injectivity loss. The key advantage of the presented approach compared to fully coupled reservoir simulations is its simplicity, which makes it more accessible to plant operators and decision makers. Thus, in particular, the scaling score can find wide application within geothermal energy, e.g., in the search for potential plant sites and the estimation of long-term efficiency. N2 - Aufgrund der tragenden Rolle der Treibhausgasemissionen für den globalen Klimawandel ist die Entwicklung von nicht-fossilen Energietechnologien essenziell. Die Tiefengeothermie stellt eine solche Alternative dar, welche vielversprechende Eigenschaften wie eine hohe Grundlastfähigkeit und ein großes ungenutztes Potenzial bietet. Die vorliegende Arbeit befasst sich mit Barytausfällungen inner- halb geothermaler Systeme und der damit einhergehenden Verringerung der Gesteinsdurchlässigkeit, welche ein Haupthindernis für die Aufrechterhaltung einer hohen Effizienz darstellen. Dabei sind hydro-geochemische Modelle unerlässlich, um die Auswirkungen von Ausfällungen auf die Effizienz eines Systems zu quantifizieren und vorherzusagen. Ziel der vorliegenden Arbeit ist es, mittels numerischer und analytischer reaktiver Transportsimulationen, den induzierten Injektivitätsverlust zu quantifizieren. Für die Berechnungen werden die klüftig-porösen Reservoire der deutschen Geothermieregionen Norddeutsches Becken (NDB) und Oberrheingraben (ORG) betrachtet. Für beide untersuchte Regionen konnte ein ähnliches, tiefenabhängiges Fällungspotenzial bestimmt werden (2,8–20,2 g/m3 Fluid). Die Reservoirsimulationen zeigen jedoch, dass der Injektivitätsverlust aufgrund von Barytablagerungen im NDB erheblich ist (1,8%–6,4% pro Jahr) und die Langlebigkeit der Anlage dadurch beeinträchtigt wird, dies gilt insbesondere für tiefere Reservoire (3000 m). Im Gegensatz dazu deuten die Simulationen der ORG-Standorte auf eine untergeordnete Rolle von Baryt hin (< 0,1%–1,2% Injektivitätsverlust pro Jahr). Die entscheidenden Unterschiede zwischen den untersuchten Regionen sind die Reservoirmächtigkeiten und das Vorhandensein von Rissen im Gestein sowie die Ionenstärke der Fluide. Der ORG weist in der Regel klüftig-poröse Reservoire mit deutlich höheren Mächtigkeiten auf, was zu einer größeren Verteilung der Präzipitate im Untergrund führt. Weiterhin sind die Ionenstärken im NDB höher, was die Barytausfällung beschleunigt und diese dadurch konzentrierter um das Bohrloch herum entstehen lässt. Je konzentrierter die Präzipitate um die Bohrung herum auftreten, desto höher ist der Injektivitätsverlust. In dieser Arbeit wurde ein Workflow erarbeitet, innerhalb dessen mittels numerischer und analytischer Modelle das Risiko von Barytausfällungen innerhalb des Reservoirs geothermischer Systeme abgeschätzt und quantifiziert werden kann. Ein zentrales Element ist ein neu entwickelter, analytischer Scaling-Score, der eine zuverlässige Schätzung des induzierten Injektivitätsverlustes ermöglicht. Der entscheidende Vorteil des präsentierten Ansatzes im Vergleich zu voll-gekoppelten Reservoirsimulationen liegt in ihrer Einfachheit, die sie für Anlagenbetreiber und Entscheidungsträger zugänglicher macht. Somit kann insbesondere der Scaling-Score eine breite Anwendung innerhalb der Geothermie finden, z.B. bei der Suche nach potenziellen Anlagenstandorten und der Abschätzung der langfristigen Effizienz. KW - geothermal energy KW - formation damage KW - reactive transport KW - radial flow KW - barite KW - Geothermie KW - radiale Strömung KW - Baryt KW - reaktiver Transport KW - Formationsschaden Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561139 ER -