TY - THES A1 - Albers, Nicole T1 - On the relevance of adhesion : applications to Saturn's rings T1 - Zur Relevanz von Teilchenadhäsion : Anwendung auf die Ringe des Saturn N2 - Since their discovery in 1610 by Galileo Galilei, Saturn's rings continue to fascinate both experts and amateurs. Countless numbers of icy grains in almost Keplerian orbits reveal a wealth of structures such as ringlets, voids and gaps, wakes and waves, and many more. Grains are found to increase in size with increasing radial distance to Saturn. Recently discovered "propeller" structures in the Cassini spacecraft data, provide evidence for the existence of embedded moonlets. In the wake of these findings, the discussion resumes about origin and evolution of planetary rings, and growth processes in tidal environments. In this thesis, a contact model for binary adhesive, viscoelastic collisions is developed that accounts for agglomeration as well as restitution. Collisional outcomes are crucially determined by the impact speed and masses of the collision partners and yield a maximal impact velocity at which agglomeration still occurs. Based on the latter, a self-consistent kinetic concept is proposed. The model considers all possible collisional outcomes as there are coagulation, restitution, and fragmentation. Emphasizing the evolution of the mass spectrum and furthermore concentrating on coagulation alone, a coagulation equation, including a restricted sticking probability is derived. The otherwise phenomenological Smoluchowski equation is reproduced from basic principles and denotes a limit case to the derived coagulation equation. Qualitative and quantitative analysis of the relevance of adhesion to force-free granular gases and to those under the influence of Keplerian shear is investigated. Capture probability, agglomerate stability, and the mass spectrum evolution are investigated in the context of adhesive interactions. A size dependent radial limit distance from the central planet is obtained refining the Roche criterion. Furthermore, capture probability in the presence of adhesion is generally different compared to the case of pure gravitational capture. In contrast to a Smoluchowski-type evolution of the mass spectrum, numerical simulations of the obtained coagulation equation revealed, that a transition from smaller grains to larger bodies cannot occur via a collisional cascade alone. For parameters used in this study, effective growth ceases at an average size of centimeters. N2 - Seit ihrer Entdeckung im Jahre 1610 durch Galileo Galilei faszinieren die Ringe des Saturn sowohl Laien als auch Experten. Planetare Ringe finden sich in der Äquatorialebene aller vier Riesenplaneten unseres Sonnensystems und sind eines der eindruckvollsten Beispiele granularer Gase. Darunter gehören die Saturnringe zu den Bekanntesten. Sie bergen eine Vielzahl von Strukturen und erstrecken sich über mehr als 240 000 Kilometer, wobei sie weit weniger als 100 Meter dick sind. Unzählige kleinerer Körper bewegen sich auf leicht exzentrischen Kepler-ähnlichen Bahnen um den Zentralplaneten und bestehen dabei vorwiegend aus Eis. Die seit Juli 2004 im Orbit um den Saturn befindliche Raumsonde Cassini liefert atemberaubende Bilder und Daten, die nicht nur neue Erkenntnisse liefern, sondern auch alte Fragestellungen neu aufleben lassen. Dazu gehört z.B. die Frage nach dem Ursprung und den Entwicklungsstufen planetarer Ringe. Kürzlich, im äusseren A-Ring entdeckte Kleinmonde, deren Existenz schon viel früher postuliert wurde, weisen auf eventuell stattfindende Wachstumsprozesse hin. Da sich planetare Ringe jedoch hauptsächlich innerhalb der sogenannten Roche-Zone des jeweiligen Planeten befinden, ist ein effektives, allein auf gravitativen Wechselwirkungen beruhendes Größenwachstum nicht zu erwarten. Der Einfluß von Teilchenadhäsion auf diese Prozesse ist bis dato fraglich. Im Rahmen dieser Dissertation ist ein Kontaktmodell für adhäsive, viskoelastische Binärstöße granularer Teilchen entwickelt worden, welches sowohl deren Agglomeration als auch Restitution gestattet. Chakateristisch für granulare Materie ist die dissipative Wechselwirkung der einzelnen Teilchen untereinander. Dieser Energieverlust wird gewöhnlich mittels des Restitutionskoeffizienten erfaßt, der das Verhältnis von Relativgeschwindigkeiten nach zu vor dem Stoß darstellt. Dieser Parameter ermöglicht es, Agglomeration und Restitution nicht nur qualitativ sondern auch quantitativ voneinander zu unterscheiden. Ferner ergibt sich eine maximale Impaktgeschwindigkeit, bei der eine Agglomeration noch immer möglich ist. Basierend auf der Existenz derartiger Grenzgeschwindigkeiten für Agglomeration und Fragmentation, wurde in dieser Dissertation ein selbstkonsistentes, kinetisches Strukturbildungsmodell vorgestellt und im Hinblick auf die Koagulation von Teilchen weitergehend untersucht. Eine Koagulationsgleichung, die einer eingeschränkten Haftwahrscheinlichkeit Rechnung trägt, ist analytisch hergeleitet worden. Aus ihr läßt sich die allgemein bekannte, aber ansonsten phenomenologische Smoluchowski Gleichung als ein Grenzfall ableiten, bei dem jeder mögliche Kontakt zur Koagulation führt. Qualitative und quantitative Untersuchungen der Relevanz von Adhäsion in kräftefreien und Kepler-gescherten Systemen beziehen sich auf die Stabilität von Zwei-Teilchen-Agglomeraten, die Wahrscheinlichkeit eines gegenseitigen "Einfangens" beider Teilchen, und die zeitliche Entwicklung der Größenverteilung unter Berücksichtigung der im ersten Teil dieser Arbeit eingeführten Kollisionsdynamik. Dabei ergab sich ein kritischer Abstand zum Zentralkörper, der das ansonsten in diesem Rahmen benutzte Roche Kriterium erweitert. Numerische Simulationen der vorgestellten Koagulationsgleichung zeigen deutlich, daß im Vergleich zu Smoluchowski-ähnlichem Verhalten, ein kollisionsbasiertes Wachstum von kleineren zu größeren Körpern nicht notwendigerweise auftritt. Lediglich Größen von Zentimetern konnten an dieser Stelle erreicht werden. Die Relevanz von adhäsiven Teilchenwechselwirkungen konnte damit nachgewiesen werden. Vermögen diese auch nicht für ein effektives Wachstum aufzukommen, so sind sie dennoch von Bedeutung für die kollektive Dynamik planetarer Ringe. KW - Saturn KW - Cassini KW - Adhäsion KW - Kinetik KW - Planetare Ringe KW - Roche Limit KW - Roche KW - Agglomeration KW - Kollisionsdynamik KW - planetary rings KW - Saturn KW - collision dynamics KW - adhesion KW - kinetics KW - kinetic Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10848 ER - TY - THES A1 - Makuch, Martin T1 - Circumplanetary dust dynamics : application to Martian dust tori and Enceladus dust plumes T1 - Circumplanetare Staubdynamik : Anwendung zu den Staubtori von Mars und den Enceladus Staubfontänen N2 - Our Solar system contains a large amount of dust, containing valuable information about our close cosmic environment. If created in a planet's system, the particles stay predominantly in its vicinity and can form extended dust envelopes, tori or rings around them. A fascinating example of these complexes are Saturnian rings containing a wide range of particles sizes from house-size objects in the main rings up to micron-sized grains constituting the E ring. Other example are ring systems in general, containing a large fraction of dust or also the putative dust-tori surrounding the planet Mars. The dynamical life'' of such circumplanetary dust populations is the main subject of our study. In this thesis a general model of creation, dynamics and death'' of circumplanetary dust is developed. Endogenic and exogenic processes creating dust at atmosphereless bodies are presented. Then, we describe the main forces influencing the particle dynamics and study dynamical responses induced by stochastic fluctuations. In order to estimate the properties of steady-state population of considered dust complex, the grain mean lifetime as a result of a balance of dust creation, life'' and loss mechanisms is determined. The latter strongly depends on the surrounding environment, the particle properties and its dynamical history. The presented model can be readily applied to study any circumplanetary dust complex. As an example we study dynamics of two dust populations in the Solar system. First we explore the dynamics of particles, ejected from Martian moon Deimos by impacts of micrometeoroids, which should form a putative tori along the orbit of the moon. The long-term influence of indirect component of radiation pressure, the Poynting-Robertson drag gives rise in significant change of torus geometry. Furthermore, the action of radiation pressure on rotating non-spherical dust particles results in stochastic dispersion of initially confined ensemble of particles, which causes decrease of particle number densities and corresponding optical depth of the torus. Second, we investigate the dust dynamics in the vicinity of Saturnian moon Enceladus. During three flybys of the Cassini spacecraft with Enceladus, the on-board dust detector registered a micron-sized dust population around the moon. Surprisingly, the peak of the measured impact rate occurred 1 minute before the closest approach of the spacecraft to the moon. This asymmetry of the measured rate can be associated with locally enhanced dust production near Enceladus south pole. Other Cassini instruments also detected evidence of geophysical activity in the south polar region of the moon: high surface temperature and extended plumes of gas and dust leaving the surface. Comparison of our results with this in situ measurements reveals that the south polar ejecta may provide the dominant source of particles sustaining the Saturn's E ring. N2 - In unserem Sonnensystem befindet sich eine große Menge an Staub, der viele Informationen über unseren Kosmos enthält. Wird der Staub im System um den Planeten gebildet, bleibt er vorwiegend in dessen Nähe und bildet Staubhüllen, -tori oder -ringe um ihn. Ein faszinierendes Beispiel eines solchen Komplexes sind die Saturnringe, in denen von mikrometergroßen Partikeln bis zu hausgroßen Körpern alle Partikelgrößen vertreten sind. Weitere Beispiele sind Ringsysteme im Allgemeinen, sowie der vermutete Staubring um Mars. Das dynamische Verhalten einer solchen Staubpopulation ist Hauptthema dieser Dissertation. In dieser Arbeit wurde ein allgemeines Modell zur Erzeugung, Dynamik und Vernichtung von planetarem Staub entwickelt. Endogene und exogene Mechanismen zur Produktion von Staub an atmosphärenlosen Körpern werden vorgestellt. Desweiteren werden die wichtigsten Kräfte welche die Teilchendynamik beeinflussen, sowie die Auswirkung von stochastischen Fluktuationen untersucht. Die Lebenszeiten der Staubkörner als Bilanz zwischen Staubproduktion und -vernichtung werden bestimmt, um den stationären Zustand der Staubkonfiguration abzuschätzen. Die Lebenszeit des Staubes hängt stark von den Eigenschaften der Umgebung und der Teilchen sowie von deren dynamischer Vergangenheit ab. Das vorgestellte Modell kann auf alle planetaren Systeme angewandt werden. Als Beispiel wurden zwei Staubpopulationen in unserem Sonnensystem studiert. Zuerst wurde die Dynamik des Staubes untersucht, welcher durch Mikrometeorideneinschläge auf dem Marsmond Deimos produziert wird und die vermuteten Marstori erzeugt. Der Poynting-Robertson-Effekt, als indirekter Einfluss des Strahlungsdruckes, bewirkt eine signifikante Langzeitänderung der Torusgeometrie. Desweiteren verursacht der Strahlungsdruck eine stochastische Dispersion des nichtsphärischen Staubteilchenensembles, was eine Verringerung der Teilchenzahldichten beziehungsweise der entsprechenden optischen Tiefen im Torus bewirkt. Weiterhin wurde die Staubdynamik in der Umgebung des Saturnmondes Enceladus untersucht. Während des Vorbeifluges der Raumsonde Cassini registrierte der Staubdetektor eine Staubpopulation von mikrometergroßen Teilchen um den Mond. Überraschenderweise wurde die maximal registrierte Staubrate eine Minute vor der größten Annäherung an den Mond gemessen. Diese Asymmetrie der Messung kann, wie in dieser Arbeit demonstriert, mit einer lokalen Staubquelle am Südpol des Mondes erklärt werden. Andere Instrumente der Cassini - Sonde belegen die geophysikalische Aktivität der Südpolregion des Mondes in Form einer erhöhten Oberflächentemperatur und Fontänen von Gas und Staub an der Südpolumgebung. Der Vergleich der numerischen Simulationen mit den in - situ - Messungen zeigt, dass die Südpolquelle die voraussichtlich wichtigste Quelle von E-Ringteilchen ist. KW - Kosmischer Staub KW - Dynamik KW - Stochastik KW - Mars KW - Saturn KW - Cosmic Dust KW - Dynamics KW - Stochastics KW - Mars KW - Saturn Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14404 ER - TY - THES A1 - Fernandes Guimarães, Ana Helena T1 - How does adhesion influence the small aggregates in Saturn's rings T1 - Wie Adhäsion die Bildung von Aggregaten in den Saturnringen beeinflusst N2 - Particles in Saturn’s main rings range in size from dust to even kilometer-sized objects. Their size distribution is thought to be a result of competing accretion and fragmentation processes. While growth is naturally limited in tidal environments, frequent collisions among these objects may contribute to both accretion and fragmentation. As ring particles are primarily made of water ice attractive surface forces like adhesion could significantly influence these processes, finally determining the resulting size distribution. Here, we derive analytic expressions for the specific self-energy Q and related specific break-up energy Q⋆ of aggregates. These expressions can be used for any aggregate type composed of monomeric constituents. We compare these expressions to numerical experiments where we create aggregates of various types including: regular packings like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA), and modified BPCAs including e.g. different constituent size distributions. We show that accounting for attractive surface forces such as adhesion a simple approach is able to: a) generally account for the size dependence of the specific break-up energy for fragmentation to occur reported in the literature, namely the division into “strength” and “gravity” regimes, and b) estimate the maximum aggregate size in a collisional ensemble to be on the order of a few meters, consistent with the maximum aggregate size observed in Saturn’s rings of about 10m. N2 - Die Ringe des Saturns bestehen aus Myriaden von Teilchen, deren Größe von Mikrometern (Staub) bis hin zu Hunderten von Metern reicht. Die Ringteilchen bestehen hauptsächlich aus Eis, wobei attraktive Oberflächenkräfte wie Adhäsion und Gravitation zur Bildung von Aggregaten führen kann. Das Wachstum der Aggregate wird durch die Wirkung der Gezeitenkräfte und auch durch Kollisionen der Ringteilchen untereinander auf natürliche Weise begrenzt. Die Kollisionen der Ringteilchen führen zu Akkretion und Fragmentation, welche die resultierende Größenverteilung der Agglomerate schließlich bestimmen. In dieser Arbeit wurden Ausdrücke für die spezifische Eigenenergie Q der Aggregate und der in Relation stehenden spezifischen Fragmentationsenergie Q* analytisch hergeleitet. Diese Ausdrücke können für alle aus monomeren Teilchen bestehenden Agglomerate verwendet werden. Die analytisch gewonnenen Ergebnisse wurden mit numerischen Experimenten verglichen. In den numerischen Experimenten wurden verschiedene Agglomerattypen erzeugt: (i) Agglomerate mit kubischem Kristallsystem, (ii) ballistische Teilchenaggregate und (iii) modifiziert ballistische Teilchenaggregate. Für die ballistischen Teilchenaggregate wurden verschiedene Größenverteilungen der Konstituenten verwendet. Als Ergebnis lassen sich die erzeugten Aggregate gemäß ihrer Größe in zwei Gruppen einteilen. Während die kleinen Aggregate hauptsächlich durch die Kontaktkräfte (Adhäsion) zusammengehalten werden, dominiert bei großen Aggregaten (größer als einige Meter) die Gravitationskraft. D.h. wächst aus kleinen Teilchen ein Aggregat, so wird dieses zunächst durch die haftenden Kontakte zwischen den Teilchen zusammengehalten. Wächst das Agglomerat über eine bestimmte Größe, so ist es die Eigengravitation, die den Körper zusammenhält. Damit kann die maximale Gesamtgröße der Aggregate im Kollisionsensemble abgeschätzt werden. Der so bestimmte Wert von einigen Metern stimmt mit der aus Beobachtungen berechneten maximalen Größe der Ringteilchen von rund 10 Metern gut überein. KW - Saturn KW - Ringe KW - Agglomerate KW - Adhäsion KW - Saturn KW - Ring KW - Aggregates KW - Adhesion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61846 ER - TY - JOUR A1 - Ye, S. -Y. A1 - Kurth, William S. A1 - Hospodarsky, George B. A1 - Persoon, Ann M. A1 - Gurnett, Don A. A1 - Morooka, Michiko A1 - Wahlund, Jan-Erik A1 - Hsu, Hsiang-Wen A1 - Seiss, Martin A1 - Srama, Ralf T1 - Cassini RPWS dust observation near the Janus/Epimetheus orbit JF - Journal of geophysical research : Space physics N2 - During the Ring Grazing orbits near the end of Cassini mission, the spacecraft crossed the equatorial plane near the orbit of Janus/Epimetheus (similar to 2.5 Rs). This region is populated with dust particles that can be detected by the Radio and Plasma Wave Science (RPWS) instrument via an electric field antenna signal. Analysis of the voltage waveforms recorded on the RPWS antennas provides estimations of the density and size distribution of the dust particles. Measured RPWS profiles, fitted with Lorentzian functions, are shown to be mostly consistent with the Cosmic Dust Analyzer, the dedicated dust instrument on board Cassini. The thickness of the dusty ring varies between 600 and 1,000 km. The peak location shifts north and south within 100 km of the ring plane, likely a function of the precession phase of Janus orbit. KW - Saturn KW - dust KW - ring Y1 - 2018 U6 - https://doi.org/10.1029/2017JA025112 SN - 2169-9380 SN - 2169-9402 VL - 123 IS - 6 SP - 4952 EP - 4960 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Seiler, Michael T1 - The Non-Keplerian Motion of Propeller Moons in the Saturnian Ring System N2 - One of the tremendous discoveries by the Cassini spacecraft has been the detection of propeller structures in Saturn's A ring. Although the generating moonlet is too small to be resolved by the cameras aboard Cassini, its produced density structure within the rings, caused by its gravity can be well observed. The largest observed propeller is called Blériot and has an azimuthal extent over several thousand kilometers. Thanks to its large size, Blériot could be identified in different images over a time span of over 10 years, allowing the reconstruction of its orbital evolution. It turns out that Blériot deviates considerably from its expected Keplerian orbit in azimuthal direction by several thousand kilometers. This excess motion can be well reconstructed by a superposition of three harmonics, and therefore resembles the typical fingerprint of a resonantly perturbed body. This PhD thesis is directed to the excess motion of Blériot. Resonant perturbations are a known for some of the outer satellites of Saturn. Thus, in the first part of this thesis, we seek for suiting resonance candidates nearby the propeller, which might explain the observed periods and amplitudes. In numeric simulations, we show that indeed resonances by Prometheus, Pandora and Mimas can explain the libration periods in good agreement, but not the amplitudes. The amplitude problem is solved by the introduction of a propeller-moonlet interaction model, where we assume a broken symmetry of the propeller by a small displacement of the moonlet. This results in a librating motion the moonlet around the propeller's symmetry center due to the non-vanishing accelerations. The retardation of the reaction of the propeller structure to the motion of the moonlet causes the propeller to become asymmetric. Hydrodynamic simulations to test our analytical model confirm our predictions. In the second part of this thesis, we consider a stochastic migration of the moonlet, which is an alternative hypothesis to explain the observed excess motion of Blériot. The mean-longitude is a time-integrated quantity and thus introduces a correlation between the independent kicks of a random walk, smoothing the noise and thus makes the residual look similar to the observed one for Blériot. We apply a diagonalization test to decorrelated the observed residuals for the propellers Blériot and Earhart and the ring-moon Daphnis. It turns out that the decorrelated distributions do not strictly follow the expected Gaussian distribution. The decorrelation method fails to distinguish a correlated random walk from a noisy libration and thus we provide an alternative study. Assuming the three-harmonic fit to be a valid representation of the excess motion for Blériot, independently from its origin, we test the likelihood that this excess motion can be created by a random walk. It turns out that a non-correlated and correlated random walk is unlikely to explain the observed excess motion. KW - Saturn KW - Rings KW - Resonances KW - Moonlets KW - Propellers KW - Migration Y1 - 2020 ER -