TY - THES A1 - Genderjahn, Steffi T1 - Biosignatures of Present and Past Microbial Life in Southern African Geoarchives T1 - Biosignaturen von gegenwärtigem und vergangenem mikrobiellen Leben in südafrikanischen Geoarchiven N2 - Global climate change is one of the greatest challenges of the 21st century, with influence on the environment, societies, politics and economies. The (semi-)arid areas of Southern Africa already suffer from water scarcity. There is a great variety of ongoing research related to global climate history but important questions on regional differences still exist. In southern African regions terrestrial climate archives are rare, which makes paleoclimate studies challenging. Based on the assumption that continental pans (sabkhas) represent a suitable geo-archive for the climate history, two different pans were studied in the southern and western Kalahari Desert. A combined approach of molecular biological and biogeochemical analyses is utilized to investigate the diversity and abundance of microorganisms and to trace temporal and spatial changes in paleoprecipitation in arid environments. The present PhD thesis demonstrates the applicability of pan sediments as a late Quaternary geo-archive based on microbial signature lipid biomarkers, such as archaeol, branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as well as phospholipid fatty acids (PLFA). The microbial signatures contained in the sediment provide information on the current or past microbial community from the Last Glacial Maximum to the recent epoch, the Holocene. The results are discussed in the context of regional climate evolution in southwestern Africa. The seasonal shift of the Innertropical Convergence Zone (ITCZ) along the equator influences the distribution of precipitation- and climate zones. The different expansion of the winter- and summer rainfall zones in southern Africa was confirmed by the frequency of certain microbial biomarkers. A period of increased precipitation in the south-western Kalahari could be described as a result of the extension of the winter rainfall zone during the last glacial maximum (21 ± 2 ka). Instead a period of increased paleoprecipitation in the western Kalahari was indicated during the Late Glacial to Holocene transition. This was possibly caused by a southwestern shift in the position of the summer rainfall zone associated to the southward movement of the ITCZ. Furthermore, for the first time this study characterizes the bacterial and archaeal life based on 16S rRNA gene high-throughput sequencing in continental pan sediments and provides an insight into the recent microbial community structure. Near-surface processes play an important role for the modern microbial ecosystem in the pans. Water availability as well as salinity might determine the abundance and composition of the microbial communities. The microbial community of pan sediments is dominated by halophilic and dry-adapted archaea and bacteria. Frequently occurring microorganisms such as, Halobacteriaceae, Bacillus and Gemmatimonadetes are described in more detail in this study. N2 - Der globale Klimawandel beeinflusst Umwelt, Gesellschaft, Politik sowie Wirtschaft und ist eine der größten Herausforderungen des 21. Jahrhunderts. Die semi-ariden bzw. ariden Gebiete im südlichen Afrika leiden bereits unter Wasserknappheit. Eine Vielzahl laufender Forschungsprojekte befasst sich mit der globalen Klimageschichte, wobei häufig Fragen zu regionalen Unterschieden offen bleiben. In den südafrikanischen Gebieten sind terrestrische Klimaarchive (wie z.B. Seen) selten, so dass die Durchführung von Paleoklimastudien schwierig ist. Basierend auf der Annahme, dass kontinentale Pfannen (Sabkhas) zur Klimarekonstruktion geeignet sind, wurden in der vorliegenden Doktorarbeit zwei unterschiedliche Pfannen in der süd- und in der westlichen Kalahari untersucht. Mittels eines kombinierten Ansatzes aus molekularbiologischen und biogeochemischen Methoden wurde die Diversität und Abundanz der Mikroorganismen analysiert, um räumliche und zeitliche Veränderungen in Bezug auf den Niederschlag in diesen trockenen Gebieten zu rekonstruieren. Diese Dissertation betrachtet u.a. das Potential der Pfannensedimente als Geoarchiv auf Basis der mikrobiellen Biomarkeranalyse, wie Archaeol, verzweigte und isoprenoiden Glycerol Dialkyl Glycerol Tetraethern (GDGTs) sowie Phospholipidfettsäuren (PLFAs). Die im Sediment enthaltenen mikrobiellen Signaturen geben Auskunft über die gegenwärtige bzw. vergangene mikrobielle Gemeinschaft vom Letzten Glazialen Maximum bis zur jüngsten Epoche, dem Holozän. Die Ergebnisse werden im Kontext der regionalen Klimaentwicklung im südwestlichen Afrika diskutiert. Bedingt durch die saisonale Verschiebung der Innertropischen Konvergenzzone (ITCZ) entlang des Äquators verändert sich die Verteilung von Niederschlags- und Klimazonen. Die unterschiedliche Ausdehnung der Winter- und Sommerregenzonen im südlichen Afrika konnte anhand der Häufigkeit bestimmter mikrobieller Biomarker bestätigt werden. Aufgrund der Ausdehnung der Winterregenzone während des Letzten Glazialen Maximums (LGM, 21 ± 2 ka) konnte eine Periode erhöhten Niederschlags in der südwestlichen Kalahari beschrieben werden. Im Gegensatz dazu konnte eine Niederschlagszunahme zwischen dem letzten Glazial bis zum Holozän (17 – 12 ka) in der westlichen Kalahari aufgezeigt werden, ausgelöst durch eine Verschiebung der ITCZ in Richtung Süden. Darüber hinaus charakterisiert diese Studie erstmals das bakterielle und archaelle Leben auf Basis der 16S rRNA Gen Hochdurchsatz-Sequenzierung in kontinentalen Pfannensedimenten und gibt einen Einblick in die Struktur der mikrobiellen Gemeinschaft. Oberflächennahe Prozesse spielen eine wichtige Rolle für das moderne mikrobielle Ökosystem in den Pfannen. Wasserverfügbarkeit sowie der Salzgehalt bestimmen die Abundanz und Diversität der mikrobiellen Gemeinschaften. Gelegentliche Regenschauer können die Bedingungen an den oberflächennahen Sedimenten schnell verändern und das mikrobielle Leben beeinflussen. Die mikrobielle Gemeinschaft der Pfannensedimente wird von halophilen und an die Trockenheit angepassten Archaeen und Bakterien dominiert. Häufig vorkommende Mikroorganismen, wie zum Beispiel Halobacteriaceae, Bacillus und Gemmatimonadetes werden in der vorliegenden Arbeit näher beschrieben. Diese Arbeit gibt einen Einblick in die Diversität und Verteilung der mikrobiellen Gemeinschaft in nährstoffarmen und niederschlagsarmen, semi-ariden Habitaten. Sie beschreibt die Verwendung von Lipidbiomarkern als Proxy der mikrobiellen Abundanz in Bezug auf vergangene klimatische Veränderungen in der Kalahari. KW - biomarker KW - paleoclimate KW - Kalahari KW - halophiles KW - next generation sequencing KW - Biomarker KW - Paläoklima KW - Kalahari KW - Halophile KW - Hochdurchsatzsequenzierung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410110 ER - TY - THES A1 - Mitzscherling, Julia T1 - Microbial communities in submarine permafrost and their response to permafrost degradation and warming N2 - The Arctic region is especially impacted by global warming as temperatures in high latitude regions have increased and are predicted to further rise at levels above the global average. This is crucial to Arctic soils and the shallow shelves of the Arctic Ocean as they are underlain by permafrost. Perennially frozen ground is a habitat for a large number and great diversity of viable microorganisms, which can remain active even under freezing conditions. Warming and thawing of permafrost makes trapped soil organic carbon more accessible to microorganisms. They can transform it to the greenhouse gases carbon dioxide, methane and nitrous oxide. On the other hand, it is assumed that thawing of the frozen ground stimulates microbial activity and carbon turnover. This can lead to a positive feedback loop of warming and greenhouse gas release. Submarine permafrost covers most areas of the Siberian Arctic Shelf and contains a large though unquantified carbon pool. However, submarine permafrost is not only affected by changes in the thermal regime but by drastic changes in the geochemical composition as it formed under terrestrial conditions and was inundated by Holocene sea level rise and coastal erosion. Seawater infiltration into permafrost sediments resulted in an increase of the pore water salinity and, thus, in thawing of permafrost in the upper sediment layers even at subzero temperatures. The permafrost below, which was not affected by seawater, remained ice-bonded, but warmed through seawater heat fluxes. The objective of this thesis was to study microbial communities in submarine permafrost with a focus on their response to seawater influence and long-term warming using a combined approach of molecular biological and physicochemical analyses. The microbial abundance, community composition and structure as well as the diversity were investigated in drill cores from two locations in the Laptev Sea, which were subjected to submarine conditions for centuries to millennia. The microbial abundance was measured through total cell counts and copy numbers of the 16S rRNA gene and of functional genes. The latter comprised genes which are indicative for methane production (mcrA) and sulfate reduction (dsrB). The microbial community was characterized by high-throughput-sequencing of the 16S rRNA gene. Physicochemical analyses included the determination of the pore water geochemical and stable isotopic composition, which were used to describe the degree of seawater influence. One major outcome of the thesis is that the submarine permafrost stratified into different so-called pore water units centuries as well as millennia after inundation: (i) sediments that were mixed with seafloor sediments, (ii) sediments that were infiltrated with seawater, and (iii) sediments that were unaffected by seawater. This stratification was reflected in the submarine permafrost microbial community composition only millennia after inundation but not on time-scales of centuries. Changes in the community composition as well as abundance were used as a measure for microbial activity and the microbial response to changing thermal and geochemical conditions. The results were discussed in the context of permafrost temperature, pore water composition, paleo-climatic proxies and sediment age. The combination of permafrost warming and increasing salinity as well as permafrost warming alone resulted in a disturbance of the microbial communities at least on time-scales of centuries. This was expressed by a loss of microbial abundance and bacterial diversity. At the same time, the bacterial community of seawater unaffected but warmed permafrost was mainly determined by environmental and climatic conditions at the time of sediment deposition. A stimulating effect of warming was observed only in seawater unaffected permafrost after millennia-scale inundation, visible through increased microbial abundance and reduced amounts of substrate. Despite submarine exposure for centuries to millennia, the community of bacteria in submarine permafrost still generally resembled the community of terrestrial permafrost. It was dominated by phyla like Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes and Proteobacteria, which can be active under freezing conditions. Moreover, the archaeal communities of both study sites were found to harbor high abundances of marine and terrestrial anaerobic methane oxidizing archaea (ANME). Results also suggested ANME populations to be active under in situ conditions at subzero temperatures. Modeling showed that potential anaerobic oxidation of methane (AOM) could mitigate the release of almost all stored or microbially produced methane from thawing submarine permafrost. Based on the findings presented in this thesis, permafrost warming and thawing under submarine conditions as well as permafrost warming without thaw are supposed to have marginal effects on the microbial abundance and community composition, and therefore likely also on carbon mobilization and the formation of methane. Thawing under submarine conditions even stimulates AOM and thus mitigates the release of methane. N2 - Die globale Erwärmung beeinträchtigt die Arktische Region besonders stark. Im Vergleich zum globalen Mittel sind die Temperaturen in den hohen Breitengraden am stärksten gestiegen und werden voraussichtlich auch weiterhin am stärksten ansteigen. Das ist äußerst kritisch, da arktische Böden und die flachen Schelfgebiete des Arktischen Ozeans von Permafrost geprägt sind. Dieser mehrjährig gefrorene Boden ist ein Habitat für eine große Anzahl und Diversität von Mikroorganismen, die lebensfähig sind und auch unter gefrorenen Bedingungen aktiv sein können. Einerseits machen eine Erwärmung und das Tauen des Permafrosts gespeicherten organischen Kohlenstoff zugänglicher für die Mikroorganismen. Diese können den Kohlenstoff in die Treibhausgase Kohlenstoffdioxid, Methan und Distickstoffoxid umwandeln. Andererseits stimuliert das Tauen des gefrorenen Bodens die mikrobielle Aktivität und den Kohlenstoffumsatz. Das kann zu einem sich verstärkenden Rückkopplungsprozess aus Erwärmung und Freisetzung von Treibhausgasen führen. Submariner Permafrost umfasst den größten Teil des Ostsibirischen Arktisschelfs und enthält ein großes, wenn auch nicht quantifiziertes Kohlenstoffreservoir. Der submarine Permafrost wird jedoch nicht nur durch Veränderungen des Wärmehaushalts beeinflusst, sondern auch durch drastische Veränderungen in der geochemischen Zusammensetzung. Durch den holozänen Meeresspiegelanstieg und durch Küstenerosion wurde der unter terrestrischen Bedingungen gebildete Permafrost überflutet. Ein Eindringen von Meerwasser führte in den Permafrostsedimenten zu einem Anstieg der Porenwasser-Salinität und dadurch zum Tauen des Permafrosts in den oberen Schichten, sogar bei Temperaturen unter 0 °C. Tiefer liegende Permafrostsedimente, die (noch) nicht vom Meerwasser beeinflusst wurden, blieben eis-gebunden, aber begannen sich durch den Wärmestrom des Meerwassers zu erwärmen. Das Ziel dieser Dissertation war es, die mikrobiellen Gemeinschaften in submarinem Permafrost zu untersuchen. Der Fokus lag dabei auf der Reaktion der Gemeinschaften auf den Einfluss des Meerwassers und die Langzeiterwärmung. Die Arbeit nutzt dafür einen kombinierten Ansatz aus molekularbiologischen und physikochemischen Analysen. Die mikrobielle Abundanz, Gemeinschaftszusammensetzung und -struktur sowie die Diversität wurden in Sedimentbohrkernen zweier Standorte in der Laptew See untersucht, welche seit Jahrhunderten bis Jahrtausenden submarinen Bedingungen ausgesetzt waren. Die mikrobielle Abundanz wurde mit Hilfe von Zellzahlen und Kopienzahlen des 16S rRNA Gens sowie funktioneller Gene bestimmt, die kennzeichnend für die Methanproduktion (mcrA) und Sulfatreduktion (dsrB) sind. Die mikrobielle Gemeinschaft wurde mit Hilfe der Hochdurchsatz-Sequenzierung des 16S rRNA Gens charakterisiert. Physikochemische Analysen beinhalteten die Untersuchung der geochemischen Zusammensetzung der Porenwassers und der stabilen Wasserisotopen. Beide Zusammensetzungen wurden genutzt, um den Grad des Meerwassereinflusses auf die Permafrostsedimente zu beschreiben. Ein Hauptergebnis der Arbeit ist, dass sich submariner Permafrost sowohl nach Jahrhunderten als auch nach Jahrtausenden der Überflutung in verschiedene Schichten, sogenannte Porenwassereinheiten, unterteilen lässt: (i) Sedimente, die sich mit dem Meeresboden vermischt haben, (ii) Sedimente, die vom Meerwasser infiltriert wurden und (iii) Sedimente, die vom Meerwasser unbeeinflusst sind. Diese Schichtenbildung spiegelt sich erst nach jahrtausendelanger Überflutung auch in der mikrobiellen Gemeinschaftszusammensetzung wider, nicht jedoch nach Jahrhunderten. Änderungen sowohl in der Gemeinschaftszusammensetzung als auch in der Abundanz wurden als Maß für mikrobielle Aktivität und die mikrobielle Reaktion auf die sich ändernden thermischen und geochemischen Bedingungen genutzt. Die Ergebnisse wurden im Kontext von Permafrosttemperatur, Porenwasserzusammensetzung, paleoklimatischen Proxys und dem Sedimentalter diskutiert. Die Kombination aus Permafrosterwärmung und steigender Salinität, sowie die Permafrosterwärmung allein, resultierten auf Zeitskalen von Jahrhunderten in einer Störung der mikrobiellen Gemeinschaft. Dies drückte sich durch einen Verlust der mikrobiellen Abundanz und der bakteriellen Diversität aus. Gleichzeitig wurde die bakterielle Gemeinschaft im vom Meerwasser unbeeinflussten, aber erwärmten Permafrost hauptsächlich durch die Umweltbedingungen und das Klima zur Zeit der Sedimentablagerung geprägt. Ein stimulierender Einfluss der Erwärmung konnte im vom Meerwasser unbeeinflussten Permafrost erst nach jahrtausendelanger Überflutung beobachtet werden. Dies wurde durch einen Anstieg in der mikrobiellen Abundanz und einer Abnahme der organischen Substrate sichtbar. Obwohl die bakteriellen Gemeinschaften des Permafrostes submarinen Bedingungen für Jahrhunderte bis Jahrtausende ausgesetzt waren, unterschieden sie sich kaum von den Gemeinschaften im terrestrischen Permafrost. Die Gemeinschaft des submarinen Permafrosts wurde von Phyla wie Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes und Proteobacteria dominiert, welche auch unter gefrorenen Bedingungen aktiv sein können. Darüber hinaus enthielten die archaellen Gemeinschaften an beiden Standorten eine hohe Anzahl von marinen und terrestrischen anaerob methan-oxidierenden Archaeen (ANME), bei denen eine Aktivität unter in situ Bedingungen bei Minusgraden angenommen wird. Eine Modellierung zeigte, dass die anaerobe Oxidation von Methan (AOM) potenziell fast die gesamte Menge des gespeicherten und mikrobiell produzierten Methans in tauendem submarinem Permafrost reduzieren könnte. Die Ergebnisse der Arbeit deuten darauf hin, dass das Tauen von Permafrost unter submarinen Bedingungen sowie eine Erwärmung ohne Tauen marginale Effekte auf die Abundanz und Zusammensetzung der mikrobiellen Gemeinschaften und somit wahrscheinlich auch auf die Mobilisierung von Kohlenstoff in Form von Methan hat. Das Tauen unter submarinen Bedingungen stimuliert sogar AOM und reduziert somit den Ausstoß von Methan. T2 - Mikrobielle Gemeinschaften in submarinem Permafrost and ihre Reaktion auf die Degradierung und Erwärmung des Permafrosts KW - Microbial communities KW - Subsea permafrost KW - Arctic KW - Mikrobielle Gemeinschaften KW - Submariner Permafrost KW - Arktis KW - Submarine permafrost KW - next generation sequencing KW - Hochdurchsatzsequenzierung KW - Permafrostdegradation KW - permafrost degradation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471240 ER -