TY - JOUR A1 - Fernandez, Ricardo A1 - Bruno, Giovanni A1 - Garces, Gerardo A1 - Nieto-Luis, H. A1 - Gonzalez-Doncel, Gaspar T1 - Fractional brownian motion of dislocations during creep deformation of metals JF - Materials science & engineering. A, Structural materials N2 - The present work offers an explanation on how the long-range interaction of dislocations influences their movement, and therefore the strain, during creep of metals. It is proposed that collective motion of dislocations can be described as a fractional Brownian motion. This explains the noisy appearance of the creep strain signal as a function of time. Such signal is split into a deterministic and a stochastic part. These terms can be related to two kinds of dislocation motions: individual and collective, respectively. The description is consistent with the fractal nature of strain-induced dislocation structures predicated in previous works. Moreover, it encompasses the evolution of the strain rate during all stages of creep, including the tertiary one. Creep data from Al99.8% and Al3.85%Mg tested at different temperatures and stresses are used to validate the proposed ideas: it is found that different creep stages present different diffusion characters, and therefore different dislocation motion character. KW - Creep KW - Aluminum alloys KW - Dislocation motion KW - Diffusion KW - Fractal KW - structures Y1 - 2020 U6 - https://doi.org/10.1016/j.msea.2020.140013 SN - 0921-5093 SN - 1873-4936 VL - 796 PB - Elsevier CY - Lausanne ER -