TY - GEN A1 - Münch, Thomas A1 - Kipfstuhl, Sepp A1 - Freitag, Johannes A1 - Meyer, Hanno A1 - Laepple, Thomas T1 - Regional climate signal vs. local noise BT - a two-dimensional view of water isotopes in Antarctic firn at Kohnen Station, Dronning Maud Land T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In low-accumulation regions, the reliability of delta O-18-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen Station, Dronning Maud Land, Antarctica. Analysing delta O-18 in two 50m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the 100-metre scale. Our results show seasonal layering of the isotopic composition but also high horizontal isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical noise model which successfully explains the trench data. The model further allows one to determine an upper bound for the reliability of climate reconstructions conducted in our study region at seasonal to annual resolution, depending on the number and the spacing of the cores taken. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 500 KW - ice-core records KW - past 2 kyr KW - temperature variability KW - accumulation rates KW - East Antarctica KW - stable-isotopes KW - surface snow KW - time-series KW - diffusion KW - Greenland Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408385 SN - 1866-8372 IS - 500 ER - TY - THES A1 - Münch, Thomas T1 - Interpretation of temperature signals from ice cores T1 - Interpretation von Temperatursignalen aus Eisbohrkernen BT - insights into the spatial and temporal variability of water isotopes in Antarctica BT - Einblicke in die räumliche und zeitliche Variabilität antarktischer Isotopendaten N2 - Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1–500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales. N2 - Das Klima der Erde verändert sich stetig sowohl im Raum als auch in der Zeit, jedoch hat die Menschheit nur einen Bruchteil dieser Entwicklung direkt verfolgen können und erst seit 200 Jahren mit instrumentellen Beobachtungen aufgezeichnet. Unser Wissen bezüglich früherer Klimaveränderungen beruht daher fast ausschließlich auf indirekten Proxydaten, also Stellvertreterdaten, welche sensitiv auf Veränderungen in bestimmten Klimavariablen reagieren und in Klimaarchiven abgespeichert werden. Essentiell ist eine hohe Genauigkeit der erhaltenen Proxydaten. Sie erlaubt, Modellvorhersagen früherer Klimazustände quantitativ zu überprüfen und damit die Modelle zu validieren. Erst dann können mit Hilfe der Modelle verlässliche Aussagen über die anthropogen bedingten zukünftigen Klimaveränderungen getroffen werden. Die polaren Eisschilde von Grönland und Antarktika sind eines der wichtigsten Klimaarchive. Über die isotopische Zusammensetzung der im Eis eingelagerten Wassermoleküle zeichnen sie Veränderungen der lokalen Lufttemperatur auf. Jedoch stellen die Daten dieses Temperaturproxys keine perfekte Aufzeichnung früherer Klimaschwankungen dar – was im Übrigen für alle Proxydaten gilt –, da neben der Temperatur eine Fülle anderer Effekte Mittelwert und Varianz der Proxyschwankungen beeinflussen und damit die direkte Interpretation der Daten in Bezug auf klimatische Veränderungen beeinträchtigen. Insbesondere trifft dies auf Gebiete mit geringen jährlichen Schneefallmengen zu, wie z.B. das Polarplateau des antarktischen Kontinents. Diese Gebiete erlauben zwar prinzipiell die Gewinnung von Proxydatensätzen, die weit in die Vergangenheit zurückreichen, allerdings erwartet man im Allgemeinen auch eine starke Beeinträchtigung des ursprünglichen, in der isotopischen Zusammensetzung des Schnees eingeprägten Temperatursignals. Unter Verwendung von Beobachtungsdaten aus der Antarktis – hauptsächlich aus dem Niedrigakkumulationsgebiet von Dronning Maud Land in Ostantarktika, in dem auch die Kohnen-Station liegt –, sowie durch Anwendung statistischer und physikalischer Methoden, trägt diese Dissertation zu einem besseren Verständnis der räumlichen und zeitlichen Variabilität der Isotopendaten über einen weiten Skalenbereich bei. Damit verbessert die vorliegende Arbeit die Anwendbarkeit dieses Temperaturproxys in Bezug auf die Rekonstruktion natürlicher Klimavariabilität. Im Speziellen wird aus den Beobachtungsdaten ein statistisches Modell abgeleitet, welches quantitativ die lokale räumliche (1–500 m-Skala) Variabilität erklärt; des Weiteren wird gezeigt, dass die zeitliche Variabilität hauptsächlich bedingt wird durch die Kombination zweier Effekte: einen klimatischen Jahreszyklus angetrieben durch den Jahresgang der Temperatur, und die Wirkung des Diffusionsprozesses auf einen zeitlich unkorrelierten Rauschterm. Diese Resultate führen zum einen zu einer wesentlich eingegrenzten Abschätzung der Repräsentativität einzelner, isotopenbasierter Proxyzeitreihen in Bezug auf lokale Temperaturveränderungen. Zum anderen beeinflussen sie erheblich die Interpretation scheinbarer Periodizitäten im Isotopensignal. Es wird darüber hinaus vermutet, dass die Gesamtstärke des Rauschens im Isotopensignal nicht nur durch die örtliche Akkumulationsrate bestimmt wird, sondern auch durch andere Parameter wie die lokale mittlere Windstärke und die räumliche und zeitliche Kohärenz der Niederschlagswichtung. Schließlich erlaubt die Erweiterung der Analyse auf größere räumliche und zeitliche Skalen die Untersuchung, inwieweit die Variabilität isotopenbasierter Proxyzeitreihen aus dem Holozän von der Zeitskala abhängt. Dadurch wird ein tieferes Verständnis der Proxyvariabilität erzielt, welches grundlegend dafür ist, die tatsächliche, in den Daten einzelner Zeitreihen verdeckt vorhandene Temperaturvariabilität, über einen weiten Zeitskalenbereich zu entschlüsseln. KW - climate physics KW - temperature variability KW - temperature proxy KW - proxy understanding KW - proxy uncertainty KW - stable isotopes KW - isotope variations KW - ice core KW - firn KW - noise KW - post-depositional KW - two-dimensional KW - Antarctica KW - Dronning Maud Land KW - Kohnen KW - Klimaphysik KW - Klimavariabilität KW - Temperaturproxy KW - Proxyverständnis KW - Proxyunsicherheit KW - stabile Isotope KW - Eisbohrkern KW - Antarktis KW - Dronning Maud Land KW - Kohnen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414963 ER - TY - JOUR A1 - Gerhard, Miriam A1 - Koussoroplis, Apostolos Manuel A1 - Hillebrand, Helmut A1 - Striebel, Maren T1 - Phytoplankton community responses to temperature fluctuations under different nutrient concentrations and stoichiometry JF - Ecology : a publication of the Ecological Society of America N2 - Nutrient availability and temperature are important drivers of phytoplankton growth and stoichiometry. However, the interactive effects of nutrients and temperature on phytoplankton have been analyzed mostly by addressing changes in average temperature, whereas recent evidence suggests an important role of temperature fluctuations. In a laboratory experiment, we grew a natural phytoplankton community under fluctuating and constant temperature regimes across 25 combinations of nitrogen (N) and phosphorus (P) supply. Temperature fluctuations decreased phytoplankton growth rate (r(max)), as predicted by nonlinear averaging along the temperature-growth relationship. r(max) increased with increasing P supply, and a significant temperature x P x N interaction reflected that the shape of the thermal reaction norm depended on nutrients. By contrast, phytoplankton carrying capacity increased with N supply and in fluctuating rather than constant temperature. Higher phytoplankton N:P ratios under constant temperature showed that temperature regimes affected cellular nutrient incorporation. Minor differences in species diversity and composition existed. Our results suggest that temperature variability interacts with nutrient supply to affect phytoplankton physiology and stoichiometry at the community level. KW - carrying capacity KW - growth rate KW - N KW - P ratios KW - phytoplankton composition KW - temperature variability KW - thermal performance Y1 - 2019 U6 - https://doi.org/10.1002/ecy.2834 SN - 0012-9658 SN - 1939-9170 VL - 100 IS - 11 PB - Wiley CY - Hoboken ER -