TY - JOUR A1 - Cvetković, Nada A1 - Conrad, Tim A1 - Lie, Han Cheng T1 - A convergent discretization method for transition path theory for diffusion processes JF - Multiscale modeling & simulation : a SIAM interdisciplinary journal N2 - Transition path theory (TPT) for diffusion processes is a framework for analyzing the transitions of multiscale ergodic diffusion processes between disjoint metastable subsets of state space. Most methods for applying TPT involve the construction of a Markov state model on a discretization of state space that approximates the underlying diffusion process. However, the assumption of Markovianity is difficult to verify in practice, and there are to date no known error bounds or convergence results for these methods. We propose a Monte Carlo method for approximating the forward committor, probability current, and streamlines from TPT for diffusion processes. Our method uses only sample trajectory data and partitions of state space based on Voronoi tessellations. It does not require the construction of a Markovian approximating process. We rigorously prove error bounds for the approximate TPT objects and use these bounds to show convergence to their exact counterparts in the limit of arbitrarily fine discretization. We illustrate some features of our method by application to a process that solves the Smoluchowski equation on a triple-well potential. KW - ergodic diffusion processes KW - transition paths KW - rare events KW - Monte Carlo KW - methods Y1 - 2021 U6 - https://doi.org/10.1137/20M1329354 SN - 1540-3459 SN - 1540-3467 VL - 19 IS - 1 SP - 242 EP - 266 PB - Society for Industrial and Applied Mathematics CY - Philadelphia ER - TY - JOUR A1 - Freitas da Cruz, Harry A1 - Pfahringer, Boris A1 - Martensen, Tom A1 - Schneider, Frederic A1 - Meyer, Alexander A1 - Böttinger, Erwin A1 - Schapranow, Matthieu-Patrick T1 - Using interpretability approaches to update "black-box" clinical prediction models BT - an external validation study in nephrology JF - Artificial intelligence in medicine : AIM N2 - Despite advances in machine learning-based clinical prediction models, only few of such models are actually deployed in clinical contexts. Among other reasons, this is due to a lack of validation studies. In this paper, we present and discuss the validation results of a machine learning model for the prediction of acute kidney injury in cardiac surgery patients initially developed on the MIMIC-III dataset when applied to an external cohort of an American research hospital. To help account for the performance differences observed, we utilized interpretability methods based on feature importance, which allowed experts to scrutinize model behavior both at the global and local level, making it possible to gain further insights into why it did not behave as expected on the validation cohort. The knowledge gleaned upon derivation can be potentially useful to assist model update during validation for more generalizable and simpler models. We argue that interpretability methods should be considered by practitioners as a further tool to help explain performance differences and inform model update in validation studies. KW - Clinical predictive modeling KW - Nephrology KW - Validation KW - Interpretability KW - methods Y1 - 2021 U6 - https://doi.org/10.1016/j.artmed.2020.101982 SN - 0933-3657 SN - 1873-2860 VL - 111 PB - Elsevier CY - Amsterdam ER -