TY - THES A1 - Olaka, Lydia Atieno T1 - Hydrology across scales : sensitivity of East African lakes to climate changes T1 - Sensitivität auf Ostafrikanischen Riftseen zu Klimawandel N2 - The lakes of the East African Rift System (EARS) have been intensively studied to better understand the influence of climate change on hydrological systems. The exceptional sensitivity of these rift lakes, however, is both a challenge and an opportunity when trying to reconstruct past climate changes from changes in the hydrological budget of lake basins on timescales 100 to 104 years. On one hand, differences in basin geometrics (shape, area, volume, depth), catchment rainfall distributions and varying erosion-deposition rates complicate regional interpretation of paleoclimate information from lacustrine sediment proxies. On the other hand, the sensitivity of rift lakes often provides paleoclimate records of excellent quality characterized by a high signal-to-noise ratio. This study aims at better understanding of the climate-proxy generating process in rift lakes by parameterizing the geomorphological and hydroclimatic conditions of a particular site providing a step towards the establishment of regional calibrations of transfer functions for climate reconstructions. The knowledge of the sensitivity of a lake basin to climate change furthermore is crucial for a better assessment of the probability of catastrophic changes in the future, which bear risks for landscapes, ecosystems, and organisms of all sorts, including humans. Part 1 of this thesis explores the effect of the morphology and the effective moisture of a lake catchment. The availability of digital elevation models (DEM) and gridded climate data sets facilitates the comparison of the morphological and hydroclimatic conditions of rift lakes. I used the hypsometric integral (HI) calculated from Shuttle Radar Topography Mission (SRTM) data to describe the morphology of ten lake basins in Kenya and Ethiopia. The aridity index (AI) describing the difference in the precipitation/evaporation balance within a catchment was used to compare the hydroclimatic of these basins. Correlating HI and AI with published Holocene lake-level variations revealed that lakes responding sensitively to relatively moderate climate change are typically graben shaped and characterized by a HI between 0.23-0.30, and relatively humid conditions with AI >1. These amplifier lakes, a term first introduced but not fully parameterized by Alayne Street-Perrott in the early 80s, are unexceptionally located in the crest of the Kenyan and Ethiopian domes. The non-amplifier lakes in the EARS either have lower HI 0.13-0.22 and higher AI (>1) or higher HI (0.31-0.37) and low AI (<1), reflecting pan-shaped morphologies with more arid hydroclimatic conditions. Part 2 of this work addresses the third important factor to be considered when using lake-level and proxy records to unravel past climate changes in the EARS: interbasin connectivity and groundwater flow through faulted and porous subsurface lithologies in a rift setting. First, I have compiled the available hydrogeological data including lithology, resistivity and water-well data for the adjacent Naivasha and Elmenteita-Nakuru basins in the Central Kenya Rift. Using this subsurface information and established records of lake-level decline at the last wet-dry climate transitions, i.e., the termination of the African Humid Period (AHP, 15 to 5 kyr BP), I used a linear decay model to estimate typical groundwater flow between the two basins. The results suggest a delayed response of the groundwater levels of ca. 5 kyrs if no recharge of groundwater occurs during the wet-dry transition, whereas the lag is 2-2.7 kyrs only using the modern recharge of ca. 0.52 m/yr. The estimated total groundwater flow from higher Lake Naivasha (1,880 m a.s.l. during the AHP) to Nakuru-Elmenteita (1,770 m) was 40 cubic kilometers. The unexpectedly large volume, more than half of the volume of the paleo-Lake Naivasha during the Early Holocene, emphasizes the importance of groundwater in hydrological modeling of paleo-lakes in rifts. Moreover, the subsurface connectivity of rift lakes also causes a significant lag time to the system introducing a nonlinear component to the system that has to be considered while interpreting paleo-lake records. Part 3 of this thesis investigated the modern intraseasonal precipitation variability within eleven lake basins discussed in the first section of the study excluding Lake Victoria and including Lake Tana. Remotely sensed rainfall estimates (RFE) from FEWS NET for 1996-2010, are used for the, March April May (MAM) July August September (JAS), October November (ON) and December January February (DJF). The seasonal precipitation are averaged and correlated with the prevailing regional and local climatic mechanisms. Results show high variability with Biennial to Triennial precipitation patterns. The spatial distribution of precipitation in JAS are linked to the onset and strength of the Congo Air Boundary (CAB) and Indian Summer Monsoon (ISM) dynamics. while in ON they are related to the strength of Positive ENSO and IOD phases This study describes the influence of graben morphologies, extreme climate constrasts within catchments and basins connectivity through faults and porous lithologies on rift lakes. Hence, it shows the importance of a careful characterization of a rift lake by these parameters prior to concluding from lake-level and proxy records to climate changes. Furthermore, this study highlights the exceptional sensitivity of rift lakes to relatively moderate climate change and its consequences for water availability to the biosphere including humans. N2 - Die Seen des Ostafrikanischen Riftsystems (EARS) wurden bereits intensiv untersucht, um den Einfluss des Klimawandels auf das hydrologische Systeme besser verstehen zu können. Dabei stellt die außergewöhnliche Sensitivität dieser Riftseen sowohl eine Herausforderung als auch eine Möglichkeit dar, um den historischen Klimawandel von dem hydrologischen Budget der Seebecken auf Zeitskalen von 10 bis 10000 Jahre abzuleiten. Auf der einen Seite verkomplizieren verschiedene Beckengeometrien (Form, Fläche, Volumen, Tiefe), unterschiedliche Niederschlagsverteilungen der einzelnen Zuflüsse und variierende Erosions- und Sedimentationsraten, die aus den Informationen von Seesedimenten generierten, regionalen Interpretationen des Paleoklimas. Andererseits ergibt sich aus der hohen Sensitivität der Riftseen eine exzellente Datenqualität, was sich in dem hohen Signal - Rausch-Verhältnis widerspiegelt. Das Ziel meiner Untersuchungen ist das verbesserte Verständlichkeit der Klimainformationen generierenden Prozesse in den Riftseen als Voraussetzung für weitere Klimarekonstruktion. Fortschritte gab es vor allem in der Entwicklung von regionalen Kalibrationen durch die Parametrisierung der geomorphologischen und hydroklimatischen Gegebenheiten einer wichtigen Lokalität, wodurch es jetzt möglich ist, von Sedimentfunden auf die Umgebungsbedingungen Rückschlüsse zu ziehen. Das Wissen um die Reaktion der Seebecken auf Klimaschwankungen ist unerlässlich für eine bessere Abschätzung der Wahrscheinlichkeit von katastrophalen Änderungen in der Zukunft:ein Szenario das sowohl für Umwelt, Ökosysteme und Organismen, einschließlich des Menschen, Risiken birgt. Im ersten Teil meiner Doktorarbeit untersuche ich den Effekt der Morphologie und der effektiven Feuchtigkeit auf das Einzugsgebiet eines Sees. Die Verfügbarkeit von digitalen Höhenmodellen (DEM) und gerasterten Klimadatensätzen ermöglicht den Vergleich von morphologischen und hydroklimatischen Bedingungen der Riftseen. Ich nutzte das hypsometrische Integral (HI), berechnet aus Daten der “Shuttle Radar Topography Mission (SRTM)”, um die Morphologie von zehn Seebecken in Kenia und Äthopien zu beschreiben. Der Dürreindex (AI), der die Differenz von Niederschlag zu Verdunstung innerhalb eines Einzugsgebietes beschreibt, wurde benutzt, um das Hydroklima dieser Becken zu vergleichen. Die Korrelation von hypsometrischem Integral und Dürreindex mit publizierten holozänen Seespiegelschwankungen zeigte, dass vor allem Seen mit kleiner Oberfläche und großer Tiefe (Grabenform), charakterisiert durch ein HI von 0.23-0.30 und feuchte Bedingungen mit einem AI > 1, empfindlich auf relativ moderate Klimaänderungen reagieren. Diese “verstärkenden” Seen (amplifier lakes), ein Begriff der von Alayne Street-Perrott in den Achzigerjahren eingeführt wurde aber bis heute nicht völlig quantitativ definiert ist, sind ohne Ausnahme in den tiefen Gräben der kenianischen und äthiopischen Dome zu finden. Seen innerhalb des EARS, die nicht derart empfindlich reagieren, haben entweder ein niedrigeres HI von 0.13-0.22 und einen höheren AI (>1) oder ein höherers HI (0.31-0.37) aber einen niedrigen AI (<1) und zeigen großflächige, flache Morphologien (Pfannenform) unter trockenen klimatischen Bedingungen. Der zweite Teil der Arbeit beschäftigt sich mit einem weiteren wichtigen Faktor innerhalb der Klimarekonstruktion, wenn Seespiegelschwankungen und indirekte Messungen (Proxies) betrachtet werden:den störungsbezogenen und porösen Gesteinsschichten geschuldeten Grundwasserverbindungen zwischen den Becken. Als erstes habe ich die vorhandenen hydrogeologischen Daten bestehend aus den Gesteinsformationen, deren Widerstandsfähigkeit und den wasserbezogenen Bohrdaten für die Seen Naivasha und Elementaita-Nakuru zusammengestellt. Mit diesen bereits etablierten Untergrunddaten, z.B. zum Seespiegelrückgang am letzten Übergang von feuchtem zum trockeneren Klima am Ende der afrikanischen Feuchtperiode (AHP) um 15000 bis 5000 Jahre vor heute, schätzte ich den typischen Grundwasserfluss zwischen den beiden benachbarten Becken mittels eines linearen Modells ab. Die Ergebnisse zeigen eine Zeitverzögerung der Grundwasserspiegelanpassung um ca. 5000 Jahre an, falls keine Auffüllung der Grundwasserzufuhr zum Ende der letzten Feuchtperiode eintrat. In heutiger Zeit, ist bedingt durch die Grundwassererzufuhr von ca. 0.52 m/Jahr, nur eine Zeitverzögerung um ca. 2000-2700 Jahre zu sehen. Der geschätzte totale Grundwasserfluss vom höher gelegenden Naivasha See (1880 m über dem Meeresspiegel zum Ende der AHP) zum Elementaita-Nakuru See (1770 m) betrug 40 km3. Dieses unerwartet große Volumen, mehr als die Hälfte des Volumens vom Naivasha See während des frühen Holozäns, verdeutlicht, dass das Grundwasser für die hydrologische Modellierung von Paleoseen in Riftgebieten unbedingt mit einbezogen werden muss. Darüber hinaus führt die Grundwasserverbindung dieser Riftseen zu einer Zeitverzögerung in deren Reaktionen, was eine nichtlineare Komponente darstellt und bei jeder Interpretation von Paleoseespiegeldaten beachtet werden muss. Der dritte Teil dieser Arbeit untersucht die intrasaisonale Niederschlagsvariabilität innerhalb von 11 Einzugsgebieten die im ersten Teil Arbeit vorgestellt wurden, mit Ausnahme des Viktoriasees, aber inklusive des Tanasees. Aus Satellitenbilddaten des FEWS NET der Jahre 1996-2010 wurden Niederschlagsabschätzungen für die Monatsreihen März-April-Mai (MAM), Juli-August-September (JAS), Oktober-November (ON) und Dezember-Januar-Februar (DJF) berechnet. Der jahreszeitliche Niederschlag wurde gemittelt und mit den dominierenden regionalen und lokalen Klimafaktoren korreliert. Die Ergebnisse zeigen eine deutliche zwei- bis dreijährige Niederschlagsvariabilität. Die räumliche Niederschlagsverteilung innerhalb des Ostafrikanische Rifts im JAS ist an die Ausbildung und Stärke der Kongoluftmassengrenze (CAB) und an die Dynamik des Indischen Sommermonsuns gekoppelt, während sie im ON an die Stärke der positiven ENSO und IOD Phasen gebunden ist. Diese Doktorarbeit beschreibt den Einfluss von Grabenmorphologien, extremen Klimakontrasten innerhalb der Zuflussgebiete und die unterirdischen Beckenverbindung durch Störungszonen und poröse Gesteinsschichten zwischen den Riftseen. Damit zeigt sie die Unerlässlichkeit einer genauen Charakterisierung von Riftseen durch morphologische und klimatische Parameter, bevor von Seespiegelschwankungen und indirekten Datensätzen auf Klimaänderungen geschlossen werden kann. Desweiteren stellt diese Arbeit die hohe Empfindsamkeit dieser Seen gegenüber relativ moderaten Klimaänderungen und deren Konsequenzen für die insgesamte Wasserverfügbarkeit heraus. KW - Ostafrikanisches Riftsystem KW - Klima KW - verstärkende Seen KW - Grundwasser KW - Skalierung KW - East African Rift System KW - Climate KW - Amplifier Lakes KW - Groundwater KW - Scaling Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55029 ER - TY - JOUR A1 - Baroni, Gabriele A1 - Oswald, Sascha T1 - A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing JF - Journal of hydrology N2 - Cosmic-Ray neutron sensing (CRS) is a unique approach to measure soil moisture at field scale filling the gap of current methodologies. However, CRS signal is affected by all the hydrogen pools on the land surface and understanding their relative importance plays an important role for the application of the method e.g., validation of remote sensing products and data assimilation. In this study, a soil moisture scaling approach is proposed to estimate directly the correct CRS soil moisture based on the soil moisture profile measured at least in one position within the field. The approach has the advantage to avoid the need to introduce one correction for each hydrogen contribution and to estimate indirectly all the related time-varying hydrogen pools. Based on the data collected in three crop seasons, the scaling approach shows its ability to identify and to quantify the seasonal biomass water equivalent. Additionally, the analysis conducted at sub-daily time resolution is able to quantify the daily vertical redistribution of the water biomass and the rainfall interception, showing promising applications of the CRS method also for these types of measurements. Overall, the study underlines how not only soil moisture but all the specific hydrological processes in the soil-plant-atmosphere continuum should be considered for a proper evaluation of the CRS signal. For this scope, the scaling approach reveals to be a simple and pragmatic analysis that can be easily extended to other experimental sites. (C) 2015 Elsevier B.V. All rights reserved. KW - Cosmic-ray KW - Soil moisture KW - Scaling KW - Interception KW - Biomass water KW - Agricultural field Y1 - 2015 U6 - https://doi.org/10.1016/j.jhydrol.2015.03.053 SN - 0022-1694 SN - 1879-2707 VL - 525 SP - 264 EP - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rybski, Diego A1 - Reusser, Dominik Edwin A1 - Winz, Anna-Lena A1 - Fichtner, Christina A1 - Sterzel, Till A1 - Kropp, Jürgen T1 - Cities as nuclei of sustainability? JF - Environment and Planning B: Urban Analytics and City Science N2 - We have assembled CO2 emission figures from collections of urban GHG emission estimates published in peer-reviewed journals or reports from research institutes and non-governmental organizations. Analyzing the scaling with population size, we find that the exponent is development dependent with a transition from super- to sub-linear scaling. From the climate change mitigation point of view, the results suggest that urbanization is desirable in developed countries. Further, we compare this analysis with a second scaling relation, namely the fundamental allometry between city population and area, and propose that density might be a decisive quantity too. Last, we derive the theoretical country-wide urban emissions by integration and obtain a dependence on the size of the largest city. KW - Scaling KW - cities KW - climate change KW - development process KW - allometry Y1 - 2017 U6 - https://doi.org/10.1177/0265813516638340 SN - 2399-8083 SN - 2399-8091 VL - 44 IS - 3 SP - 425 EP - 440 PB - Sage Publ. CY - London ER -