TY - JOUR A1 - Metz, Johannes A1 - von Oppen, Jonathan A1 - Tielbörger, Katja T1 - Parental environmental effects due to contrasting watering adapt competitive ability, but not drought tolerance, in offspring of a semi-arid annual Brassicaceae JF - The journal of ecology N2 - Parental effects (PE) can be adaptive and improve offspring performance when parents and offspring experience similar environmental conditions. However, it is unknown whether adaptive PE exist also in habitats where such similarity is unlikely due to strong temporal variation. In particular, we do not know whether PE can adapt offspring to fluctuating levels of neighbour competition in such habitats. Here, we tested for adaptive PE in terms of two key environmental factors in a semi-arid annual system, competition and drought. While rainfall was stochastic in the study site, the competitive environment was partly predictable: higher plant densities followed after favourable (rainy) years due to high seed production. We therefore expected PE to adapt the offspring's competitive ability to these (predictable) fluctuations in plant densities, rather than to adapt the offspring's drought tolerance to the (unpredictable) occurrence of intensified drought. Parental plants of Biscutella didyma, an annual Brassicaceae, were raised under favourable watering and under drought conditions. Offspring performance was then tested under a full-factorial combination of two neighbour regimes and six watering levels in the glasshouse. Offspring of parents grown under favourable conditions were stronger competitors. This was associated with a small shift in phenology but not with higher parental seed provisioning. Offspring from parents grown under drought showed no improved drought tolerance. Moreover, no PE were detectable when offspring were grown without neighbours. Our results suggest a novel path of adaptive PE: higher competitive ability was induced in offspring that were more likely to experience high neighbour densities. Together with the lack of adaptive PE towards drought tolerance, this emphasizes that a correlation between parental and offspring environment is crucial for adaptive PE to evolve. Our results also call for the inclusion of competitive effects in future PE studies.Synthesis. This study demonstrates the important role of adaptive PE for plant fitness (regarding competition) but also their limits (regarding drought) in temporally variable environments, based on the predictability of the respective environmental factor. KW - annual plants KW - Biscutella didyma KW - competition KW - dryland ecosystems KW - maternal environmental effects KW - phenology KW - plant population and community dynamics KW - plant-plant interactions KW - transgenerational plasticity KW - water stress Y1 - 2015 U6 - https://doi.org/10.1111/1365-2745.12411 SN - 0022-0477 SN - 1365-2745 VL - 103 IS - 4 SP - 990 EP - 997 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Weiss, Lina A1 - Schalow, Linda A1 - Jeltsch, Florian A1 - Geissler, Katja T1 - Experimental evidence for root competition effects on community evenness in one of two phytometer species JF - Journal of plant ecology N2 - Aims Plant-plant interactions, being positive or negative, are recognized to be key factors in structuring plant communities. However, it is thought that root competition may be less important than shoot competition due to greater size symmetry belowground. Because direct experimental tests on the importance of root competition are scarce, we aim at elucidating whether root competition may have direct or indirect effects on community structure. Indirect effects may occur by altering the overall size asymmetry of competition through root-shoot competitive interactions. Methods We used a phytometer approach to examine the effects of root, shoot and total competition intensity and importance on evenness of experimental plant communities. Thereby two different phytometer species, Festuca brevipila and Dianthus carthusianorum, were grown in small communities of six grassland species over three levels of light and water availability, interacting with neighbouring shoots, roots, both or not at all. Important Findings We found variation in community evenness to be best explained if root and shoot (but not total) competition were considered. However, the effects were species specific: in Dianthus communities increasing root competition increased plant community evenness, while in Festuca communities shoot competition was the driving force of this evenness response. Competition intensities were influenced by environmental conditions in Dianthus, but not in Festuca phytometer plants. While we found no evidence for root-shoot interactions for neither phytometer species root competition in Dianthus communities led to increased allocation to shoots, thereby increasing the potential ability to perform in size-asymmetric competition for light. Our experiment demonstrates the potential role of root competition in structuring plant communities. KW - plant-plant interactions KW - root and shoot competition KW - intensity vs KW - importance KW - experimental plant communities KW - asymmetry of competition Y1 - 2018 U6 - https://doi.org/10.1093/jpe/rty021 SN - 1752-9921 SN - 1752-993X VL - 12 IS - 2 SP - 281 EP - 291 PB - Oxford Univ. Press CY - Oxford ER -