TY - JOUR A1 - Hilker, Monika A1 - Schwachtje, Jens A1 - Baier, Margarete A1 - Balazadeh, Salma A1 - Bäurle, Isabel A1 - Geiselhardt, Sven A1 - Hincha, Dirk K. A1 - Kunze, Reinhard A1 - Mueller-Roeber, Bernd A1 - Rillig, Matthias G. A1 - Rolff, Jens A1 - Schmülling, Thomas A1 - Steppuhn, Anke A1 - van Dongen, Joost A1 - Whitcomb, Sarah J. A1 - Wurst, Susanne A1 - Zuther, Ellen A1 - Kopka, Joachim T1 - Priming and memory of stress responses in organisms lacking a nervous system JF - Biological reviews KW - priming KW - stress signalling KW - epigenetics KW - memory KW - fitness KW - stress tolerance KW - defence KW - bet hedging Y1 - 2016 U6 - https://doi.org/10.1111/brv.12215 SN - 1464-7931 SN - 1469-185X VL - 91 SP - 1118 EP - 1133 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Friedrich, Thomas A1 - Faivre, Lea A1 - Bäurle-Lenhard, Isabel A1 - Schubert, Daniel T1 - Chromatin-based mechanisms of temperature memory in plants JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - For successful growth and development, plants constantly have to gauge their environment. Plants are capable to monitor their current environmental conditions, and they are also able to integrate environmental conditions over time and store the information induced by the cues. In a developmental context, such an environmental memory is used to align developmental transitions with favourable environmental conditions. One temperature-related example of this is the transition to flowering after experiencing winter conditions, that is, vernalization. In the context of adaptation to stress, such an environmental memory is used to improve stress adaptation even when the stress cues are intermittent. A somatic stress memory has now been described for various stresses, including extreme temperatures, drought, and pathogen infection. At the molecular level, such a memory of the environment is often mediated by epigenetic and chromatin modifications. Histone modifications in particular play an important role. In this review, we will discuss and compare different types of temperature memory and the histone modifications, as well as the reader, writer, and eraser proteins involved. KW - chromatin KW - cold KW - epigenetics KW - heat KW - memory KW - nucleosome remodelling KW - polycomb KW - priming KW - trithorax Y1 - 2018 U6 - https://doi.org/10.1111/pce.13373 SN - 0140-7791 SN - 1365-3040 VL - 42 IS - 3 SP - 762 EP - 770 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Perrella, Giorgio A1 - Bäurle, Isabel A1 - van Zanten, Martijn T1 - Epigenetic regulation of thermomorphogenesis and heat stress tolerance JF - New phytologist : international journal of plant science N2 - Many environmental conditions fluctuate and organisms need to respond effectively. This is especially true for temperature cues that can change in minutes to seasons and often follow a diurnal rhythm. Plants cannot migrate and most cannot regulate their temperature. Therefore, a broad array of responses have evolved to deal with temperature cues from freezing to heat stress. A particular response to mildly elevated temperatures is called thermomorphogenesis, a suite of morphological adaptations that includes thermonasty, formation of thin leaves and elongation growth of petioles and hypocotyl. Thermomorphogenesis allows for optimal performance in suboptimal temperature conditions by enhancing the cooling capacity. When temperatures rise further, heat stress tolerance mechanisms can be induced that enable the plant to survive the stressful temperature, which typically comprises cellular protection mechanisms and memory thereof. Induction of thermomorphogenesis, heat stress tolerance and stress memory depend on gene expression regulation, governed by diverse epigenetic processes. In this Tansley review we update on the current knowledge of epigenetic regulation of heat stress tolerance and elevated temperature signalling and response, with a focus on thermomorphogenesis regulation and heat stress memory. In particular we highlight the emerging role of H3K4 methylation marks in diverse temperature signalling pathways. KW - chromatin remodelling KW - elevated temperature KW - epigenetics KW - heat stress KW - histone modification KW - memory KW - temperature response KW - thermomorphogenesis Y1 - 2022 U6 - https://doi.org/10.1111/nph.17970 SN - 0028-646X SN - 1469-8137 VL - 234 IS - 4 SP - 1144 EP - 1160 PB - Wiley CY - Hoboken ER -