TY - JOUR A1 - Schwarz, Maria A1 - Lossow, Kristina A1 - Kopp, Johannes Florian A1 - Schwerdtle, Tanja A1 - Kipp, Anna Patricia T1 - Crosstalk of Nrf2 with the Trace Elements Selenium, Iron, Zinc, and Copper JF - Nutrients N2 - Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice. KW - Nrf2 KW - selenium KW - iron KW - copper KW - zinc KW - homeostasis Y1 - 2019 U6 - https://doi.org/10.3390/nu11092112 SN - 2072-6643 VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mendel, Ralf R. A1 - Hercher, Thomas W. A1 - Zupok, Arkadiusz A1 - Hasnat, Muhammad Abrar A1 - Leimkühler, Silke T1 - The requirement of inorganic Fe-S clusters for the biosynthesis of the organometallic molybdenum cofactor JF - Inorganics : open access journal N2 - Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur froml-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail. KW - Moco biosynthesis KW - Fe-S cluster assembly KW - l-cysteine desulfurase KW - ISC KW - SUF KW - NIF KW - iron KW - molybdenum KW - sulfur Y1 - 2020 U6 - https://doi.org/10.3390/inorganics8070043 SN - 2304-6740 VL - 8 IS - 7 PB - MDPI CY - Basel ER -