TY - JOUR A1 - Niemeyer, Bastian A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline JF - Molecular ecology resources N2 - Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north-south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single-tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition. KW - environmental DNA KW - metabarcoding KW - pollen KW - Siberia KW - trnL marker KW - vegetation Y1 - 2017 U6 - https://doi.org/10.1111/1755-0998.12689 SN - 1755-098X SN - 1755-0998 VL - 17 SP - e46 EP - e62 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Balint, Miklos A1 - Marton, Orsolya A1 - Schatz, Marlene A1 - Düring, Rolf-Alexander A1 - Grossart, Hans-Peter T1 - Proper experimental design requires randomization/balancing of molecular ecology experiments JF - Ecology and evolution N2 - Properly designed (randomized and/or balanced) experiments are standard in ecological research. Molecular methods are increasingly used in ecology, but studies generally do not report the detailed design of sample processing in the laboratory. This may strongly influence the interpretability of results if the laboratory procedures do not account for the confounding effects of unexpected laboratory events. We demonstrate this with a simple experiment where unexpected differences in laboratory processing of samples would have biased results if randomization in DNA extraction and PCR steps do not provide safeguards. We emphasize the need for proper experimental design and reporting of the laboratory phase of molecular ecology research to ensure the reliability and interpretability of results. KW - batch effect KW - bias KW - DNA extraction KW - environmental DNA KW - laboratory practice KW - lake community KW - metabarcoding KW - nondemonic intrusions KW - PCR KW - sediment Y1 - 2018 U6 - https://doi.org/10.1002/ece3.3687 SN - 2045-7758 VL - 8 IS - 3 SP - 1786 EP - 1793 PB - Wiley CY - Hoboken ER -