TY - THES A1 - Rock, Joachim T1 - Klimaschutz und Kohlenstoff in Holz : Vergleich verschiedener Strategien T1 - Climate protection and carbon in wood : comparison of management strategies N2 - Wälder haben im Bezug zum Klimawandel mehrere Rollen: Sie sind Kohlenstoffspeicher, -senken, sowie Lieferanten von Holz als Rohstoff für die Kohlenstoffspeicher in Produkten und für Substitution fossiler Energieträger. Unter Klimaschutzgesichtspunkten ist es wünschenswert, die Kohlenstoffbindung im Gesamtsystem aus Senken, Speichern und Substitution zu maximieren und zu entscheiden, welche Maßnahme an welchem Ort und unter welchen Rahmenbedingungen den größten positiven Effekt auf die CO2-Bilanz hat. Um die Speicherung in den verschiedenen Kompartimenten erfassen zu können müssen geeignete Inventurverfahren zur Verfügung stehen. Die IPCC – GPG benennen die Speicher und geben zum Teil Anforderungen an die zu erreichende Inventurgenauigkeit. Aus der klassischen Forsteinrichtung stehen genügend Methoden zur Verfügung, um das oberirdische Volumen sehr genau zu erheben. Um den Anforderungen an ein umfassendes Kohlenstoffmonitoring genügen zu können, müssen diese Verfahren in den Bereichen Erfassung von Störungsfolgen, Totholzdynamik, Boden und der Berechnung von Gesamt-Kohlenstoffvorräten aus dem Holzvolumen ergänzt werden. Zusätzlich bietet sich an, Bewirtschaftungsmaßnahmen entsprechend zu erfassen, um ihre Auswirkung auf die Kohlenstoffdynamik ebenfalls feststellen zu können. Dies ist für die Berichterstattung zwischen Inventuren sowie für die Herausrechnung von nicht-menschenverursachter erhöhter Kohlenstoffspeicherung („factoring out“ im Sinne des KP) wünschenswert. Wenn Bewirtschaftungsmaßnahmen unterschieden werden können und ihre Auswirkungen auf C-Vorräte bestimmbar sind, ist eine Verifizierung erhöhter Speicherung auch z. B. für Projekte nach Art. 3.4 des KP durchführbar. Diese Arbeiten stecken jedoch noch in der Anfangsphase. Im Rahmen dieser Arbeit wurde die erste verfügbare qualitative Übersicht zu dieser Thematik erstellt. Die Optimierung der Wald-Holz-Option wird durch die im Kyoto-Protokoll (und den zugehörigen Folgeabkommen) vereinbarten Regelungen erschwert, da einerseits zwischen Wald und Produkten eine Trennung besteht und andererseits die Maßnahmenverantwortlichem im Wald nicht direkt durch das KP angesprochen werden. Eingeschlagenes Holz wird im Wald als Emission betrachtet und dem entsprechenden Sektor zugerechnet, was jedoch keine Auswirkungen auf den Forstbetrieb hat. Dieser profitiert im Gegenteil derzeit von der durch die – auch von KP Regelungen beeinflussten – Holzpreise und erhöht die Nutzungen, was zu Vorratsabsenkungen im Wald führt. Ob diese Absenkungen durch die Substitutionseffekte des geernteten Holzes kompensiert werden ist derzeit noch nicht geklärt. Um die Trennung zwischen Wald und Produktpool aufzuweichen bietet es sich an, die Waldbesitzer am Emissionsrechtehandel teilhaben zu lassen, damit nicht nur die Ernte sondern auch der Ernteverzicht finanziell bewertbar sind. Sozio-ökonomische Szenarien zur künftigen Entwicklung der Landwirtschaft zeigen große Flächenpotentiale, die für die Nahrungs- und Futtermittelproduktion nicht mehr benötigt werden oder nicht mehr rentabel sein werden. Eine mögliche Nutzung in Zukunft sind Energieholzplantagen. Informationen zu möglichen Erträgen sind zur Zeit noch unzureichend und Analysen zur Nachhaltigkeit dieser Erträge unter Klimawandel sind nicht vorhanden. In dieser Arbeit wurde mit dem ökophysiologischen Waldwachstumsmodell 4C an Beispielsstandorten in Brandenburg das Wachstum von Energieholzplantagen unter derzeitigem Klima und unter verschiedenen regionalisierten Klimawandelszenarien bis 2055 simuliert. Ertragspotentiale liegen derzeit auf der Mehrzahl der Standorte im positiven Bereich, auf einigen Standorten ist jedoch nur begrenzt mit positiven Deckungsbeiträgen zu rechnen. Bis 2055 ist in allen Szenarien mit einem leichten Rückgang der Erträge und einer deutlicheren Verringerung der Grundwasserneubildung unter Energieholzplantagen zu rechnen. Die Unterschiede zwischen Standorten sind jedoch derzeit und unter zukünftig möglichem Klima stärker als klimabedingte Änderungen. Bei der großflächigen Anlage von Energieholzplantagen können negative Auswirkungen auf die Biodiversität und andere Naturschutzbelange eintreten. Eine diese Effekte abmildernde Flächengestaltung, die trotzdem Erträge auf dem Niveau heutiger Vollerwerbslandwirtschaft erreicht, ist möglich. Insgesamt lässt sich für die Optimierung der Wald-Holz-Option feststellen, dass eine Nicht-Nutzung bestehender Waldflächen unter Klimaschutzgesichtspunkten negativ ist. Der Substitutionseffekt geernteten Holzes beträgt zusätzliche ca. 70 Prozent Kohlenstoff, die in dieser Form in nicht bewirtschafteten mitteleuropäischen Wäldern nicht zusätzlich gespeichert werden. Es ist davon auszugehen, dass sich durch die Berücksichtigung von Substitutionseffekten andere – wahrscheinlich kürzere – als die heute üblichen Produktionszeiten ergeben. Auf bisher waldfreien Flächen ist die Anlage von Energieholzplantagen positiver zu werten als eine normale Aufforstung. N2 - Forests are important for climate protection: They sequester and store carbon, and provide timber for wood products and fossil fuel substitution. These functions interact in a complex way. From a climate protection point of view it is desirable to optimize these interactions, i.e. to maximize the amount of carbon stored in the whole system (called „forest-timber-option“) and to analyse what impact a management decision at the local level has with regard to the amount of carbon in the atmosphere. Inventory methods to estimate the total amount of carbon in a forest are needed. Classical forest inventories assess above-ground tree volume. To estimate total car-bon in accordance with the requirements of the Kyoto-Protocol, these inventories need to be expanded with regard to the assessment of disturbances, dead wood de-composition, soil carbon, and the estimation of carbon from volume. Methods in-vented here can also be used to assess local-level management activities, or to “fac-tor out” non-human-induced changes in carbon pools. The optimization of the „forest-timber-option“ is restricted due to regulations of the Kyoto-Protocol, because forest-related measures are accounted for under other sec-tors than wood and timber use. Harvested timber is estimated as an “emission” from the forest, and forest owners have no benefit from the use of wood for industrial pur-poses. Here, an inclusion of forestry in emission trading schemes can be advanta-geous. Alternative ways to produce wood are short-rotation coppice plantations on agricul-tural soils. Information about growth and yield potentials are scarce for the regions where land availability is high. Aspen (P. tremula, P. tremuloides) was parameterized in an eco-physiological forest growth model (“4C”) to assess these potentials on sites in Eastern Germany under current and under changing climatic conditions. The re-sults indicate that growth potentials are more sensitive to soil quality than to climatic conditions. Potential yields allow for incomes comparable to standard agriculture, but biodiversity and groundwater recharge may be negatively affected by large-scale plantations. An optimization of the „forest-timber-option“ requests the use of timber from forests. Harvested timber substitutes additional 70 % of carbon from fossil fuels. Forests un-der total protection do store more carbon than managed forest, but not equivalent to the substitution effects. Total protection of forests is thus no viable means for climate protection under Central European conditions. KW - Waldbewirtschaftung KW - Kohlenstoffspeicherung KW - Kyoto-Protokoll KW - carbon sequestration KW - forest management KW - Kyoto Protocol Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17531 ER - TY - JOUR A1 - Milcu, Alexandru A1 - Heim, Angela A1 - Ellis, Richard J. A1 - Scheu, Stefan A1 - Manning, Pete T1 - Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient JF - Ecosystems N2 - Carbon (C) inputs and nutrient availability are known to affect soil organic carbon (SOC) stocks. However, general rules regarding the operation of these factors across a range of soil nutrient availabilities and substrate qualities are unidentified. "Priming" (stimulated decomposition by labile C inputs) and 'preferential substrate utilization' (retarded decomposition due to shifts in community composition towards microbes that do not mineralize SOC) are two hypotheses to explain effects of labile C additions on SOC dynamics. For effects of nutrient additions (nitrogen and phosphorus) on SOC dynamics, the stoichiometric (faster decomposition of materials of low carbon-to-nutrient ratios) and 'microbial mining' (that is, reduced breakdown of recalcitrant C forms for nutrients under fertile conditions) hypotheses have been proposed. Using the natural gradient of soil nutrient availability and substrate quality of a chronosequence, combined with labile C and nutrient amendments, we explored the support for these contrasting hypotheses. Additions of labile C, nitrogen (N), phosphorus (P), and combinations of C and N and C and P were applied to three sites: 2-year fallow grassland, mature grassland and forest, and the effects of site and nutrient additions on litter decomposition and soil C dynamics were assessed. The response to C addition supported the preferential substrate hypothesis for easily degradable litter C and the priming hypothesis for SOC, but only in nitrogen-enriched soils of the forest site. Responses to N addition supported the microbial mining hypothesis irrespective of C substrate (litter or SOC), but only in the forest site. Further, P addition effects on SOC support the stoichiometric hypothesis; P availability appeared key to soil C release (priming) in the forest site if labile C and N is available. These results clearly link previously contrasting hypotheses of the factors controlling SOC with the natural gradient in litter quality and nutrient availability that exists in ecosystems at different successional stages. A holistic theory that incorporates this variability of responses, due to different mechanisms, depending on nutrient availability and substrate quality is essential for devising management strategies to safeguard soil C stocks. KW - carbon sequestration KW - priming effect KW - microbial mining KW - succession KW - microorganisms KW - litter decomposition Y1 - 2011 U6 - https://doi.org/10.1007/s10021-011-9440-z SN - 1432-9840 VL - 14 IS - 5 SP - 710 EP - 719 PB - Springer CY - New York ER - TY - JOUR A1 - Landholm, David M. A1 - Pradhan, Prajal A1 - Wegmann, Peter A1 - Romero Sanchez, Miguel Antonio A1 - Suarez Salazar, Juan Carlos A1 - Kropp, Jürgen T1 - Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caqueta JF - Environmental research letters N2 - Colombia's agriculture, forestry and other land use sector accounts for nearly half of its total greenhouse gas (GHG) emissions. The importance of smallholder deforestation is comparatively high in relation to its regional counterparts, and livestock agriculture represents the largest driver of primary forest depletion. Silvopastoral systems (SPSs) are presented as agroecological solutions that synergistically enhance livestock productivity, improve local farmers' livelihoods and hold the potential to reduce pressure on forest conversion. The department of Caquetá represents Colombia's most important deforestation hotspot. Targeting smallholder livestock farms through survey data, in this work we investigate the GHG mitigation potential of implementing SPSs for smallholder farms in this region. Specifically, we assess whether the carbon sequestration taking place in the soil and biomass of SPSs is sufficient to offset the per-hectare increase in livestock GHG emissions resulting from higher stocking rates. To address these questions we use data on livestock population characteristics and historic land cover changes reported from a survey covering 158 farms and model the carbon sequestration occurring in three different scenarios of progressively-increased SPS complexity using the CO2 fix model. We find that, even with moderate tree planting densities, the implementation of SPSs can reduce GHG emissions by 2.6 Mg CO2e ha−1 yr−1 in relation to current practices, while increasing agriculture productivity and contributing to the restoration of severely degraded landscapes. KW - deforestation KW - silvopastoral systems KW - greenhouse gas emissions KW - livestock KW - carbon sequestration Y1 - 2019 U6 - https://doi.org/10.1088/1748-9326/ab3db6 SN - 1748-9326 VL - 14 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sandhage-Hofmann, Alexandra A1 - Linstädter, Anja A1 - Kindermann, Liana A1 - Angombe, Simon A1 - Amelung, Wulf T1 - Conservation with elevated elephant densities sequesters carbon in soils despite losses of woody biomass JF - Global change biology N2 - Nature conservation and restoration in terrestrial ecosystems is often focused on increasing the numbers of megafauna, expecting them to have positive impacts on ecological self-regulation processes and biodiversity. In sub-Saharan Africa, conservation efforts also aspire to protect and enhance biodiversity with particular focus on elephants. However, elephant browsing carries the risk of woody biomass losses. In this context, little is known about how increasing elephant numbers affects carbon stocks in soils, including the subsoils. We hypothesized that (1) increasing numbers of elephants reduce tree biomass, and thus the amount of C stored therein, resulting (2) in a loss of soil organic carbon (SOC). If true, a negative carbon footprint could limit the sustainability of elephant conservation from a global carbon perspective. To test these hypotheses, we selected plots of low, medium, and high elephant densities in two national parks and adjacent conservancies in the Namibian component of the Kavango Zambezi Transfrontier Area (KAZA), and quantified carbon storage in both woody vegetation and soils (1 m). Analyses were supplemented by the assessment of soil carbon isotopic composition. We found that increasing elephant densities resulted in a loss of tree carbon storage by 6.4 t ha(-1). However, and in contrast to our second hypothesis, SOC stocks increased by 4.7 t ha(-1) with increasing elephant densities. These higher SOC stocks were mainly found in the topsoil (0-30 cm) and were largely due to the formation of SOC from woody biomass. A second carbon input source into the soils was megaherbivore dung, which contributed with 0.02-0.323 t C ha(-1) year(-1) to ecosystem carbon storage in the low and high elephant density plots, respectively. Consequently, increasing elephant density does not necessarily lead to a negative C footprint, as soil carbon sequestration and transient C storage in dung almost compensate for losses in tree biomass. KW - carbon sequestration KW - conservation KW - elephants KW - soil organic carbon KW - woody biomass Y1 - 2021 U6 - https://doi.org/10.1111/gcb.15779 SN - 1354-1013 SN - 1365-2486 VL - 27 IS - 19 SP - 4601 EP - 4614 PB - Blackwell Science CY - Oxford [u.a.] ER - TY - JOUR A1 - Puppe, Daniel A1 - Leue, Martin A1 - Sommer, Michael A1 - Schaller, Jörg A1 - Kaczorek, Danuta T1 - Auto-fluorescence in phytoliths BT - a mechanistic understanding derived from microscopic and spectroscopic analyses JF - Frontiers in Environmental Science N2 - The detection of auto-fluorescence in phytogenic, hydrated amorphous silica depositions (phytoliths) has been found to be a promising approach to verify if phytoliths were burnt or not, especially in archaeological contexts. However, it is unknown so far at what temperature and how auto-fluorescence is induced in phytoliths. We used fluorescence microscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy to analyze auto-fluorescence in modern phytoliths extracted from plant samples or in intact leaves of winter wheat. Leaves and extracted phytoliths were heated at different temperatures up to 600 degrees C. The aims of our experiments were i) to find out what temperature is needed to induce auto-fluorescence in phytoliths, ii) to detect temperature-dependent changes in the molecular structure of phytoliths related to auto-fluorescence, and iii) to derive a mechanistic understanding of auto-fluorescence in phytoliths. We found organic compounds associated with phytoliths to cause auto-fluorescence in phytoliths treated at temperatures below approx. 400 degrees C. In phytoliths treated at higher temperatures, i.e., 450 and 600 degrees C, phytolith auto-fluorescence was mainly caused by molecular changes of phytolith silica. Based on our results we propose that auto-fluorescence in phytoliths is caused by clusterization-triggered emissions, which are caused by overlapping electron clouds forming non-conventional chromophores. In phytoliths heated at temperatures above about 400 degrees C dihydroxylation and the formation of siloxanes result in oxygen clusters that serve as non-conventional chromophores in fluorescence events. Furthermore, SEM-EDX analyses revealed that extractable phytoliths were dominated by lumen phytoliths (62%) compared to cell wall phytoliths (38%). Our findings might be not only relevant in archaeological phytolith-based examinations, but also for studies on the temperature-dependent release of silicon from phytoliths and the potential of long-term carbon sequestration in phytoliths. KW - fluorescence microscopy KW - FTIR spectroscopy KW - SEM-EDX KW - burnt phytoliths; KW - carbon sequestration Y1 - 2022 U6 - https://doi.org/10.3389/fenvs.2022.915947 SN - 2296-665X VL - 10 PB - Frontiers Media CY - Lausanne ER -