TY - JOUR A1 - Zhu, Chuanbin A1 - Pilz, Marco A1 - Cotton, Fabrice T1 - Which is a better proxy, site period or depth to bedrock, in modelling linear site response in addition to the average shear-wave velocity? JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - This study aims to identify the best-performing site characterization proxy alternative and complementary to the conventional 30 m average shear-wave velocity V-S30, as well as the optimal combination of proxies in characterizing linear site response. Investigated proxies include T-0 (site fundamental period obtained from earthquake horizontal-to-vertical spectral ratios), V-Sz (measured average shear-wave velocities to depth z, z = 5, 10, 20 and 30 m), Z(0.8) and Z(1.0) (measured site depths to layers having shear-wave velocity 0.8 and 1.0 km/s, respectively), as well as Z(x-infer) (inferred site depths from a regional velocity model, x = 0.8 and 1.0, 1.5 and 2.5 km/s). To evaluate the performance of a site proxy or a combination, a total of 1840 surface-borehole recordings is selected from KiK-net database. Site amplifications are derived using surface-to-borehole response-, Fourier- and cross-spectral ratio techniques and then are compared across approaches. Next, the efficacies of 7 single-proxies and 11 proxy-pairs are quantified based on the site-to-site standard deviation of amplification residuals of observation about prediction using the proxy or the pair. Our results show that T-0 is the best-performing single-proxy among T-0, Z(0.8), Z(1.0) and V-Sz. Meanwhile, T-0 is also the best-performing proxy among T-0, Z(0.8), Z(1.0) and Z(x-infer) complementary to V-S30 in accounting for the residual amplification after V-S30-correction. Besides, T-0 alone can capture most of the site effects and should be utilized as the primary site indicator. Though (T-0, V-S30) is the best-performing proxy pair among (V-S30, T-0), (V-S30, Z(0.8)), (V-S30, Z(1.0)), (V-S30, Z(x-infer)) and (T-0, V-Sz), it is only slightly better than (T-0, V-S20). Considering both efficacy and engineering utility, the combination of T-0 (primary) and V-S20 (secondary) is recommended. Further study is needed to test the performances of various proxies on sites in deep sedimentary basins. KW - Site effects KW - Amplification KW - Site proxy KW - Surface-to-borehole spectral ratios KW - KiK-net KW - Earthquake Y1 - 2019 U6 - https://doi.org/10.1007/s10518-019-00738-6 SN - 1570-761X SN - 1573-1456 VL - 18 IS - 3 SP - 797 EP - 820 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zhu, Chuanbin A1 - Pilz, Marco A1 - Cotton, Fabrice T1 - Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation JF - Soil dynamics and earthquake engineering N2 - Ground response analyses (GRA) model the vertical propagations of SH waves through flat-layered media (1DSH) and are widely carried out to evaluate local site effects in practice. Horizontal-to-vertical spectral ratio (HVSR) technique is a cost-effective approach to extract certain site-specific information, e.g., site fundamental frequency (f(0)), but HVSR values cannot be directly used to approximate the levels of S-wave amplifications. Motivated by the work of Kawase et al. (2019), we propose a procedure to correct earthquake HVSR amplitudes for direct amplification estimations. The empirical correction compensates HVSR by generic vertical amplification spectra categorized by the vertical fundamental frequency (f(0v)) via kappa-means clustering. In this investigation, we evaluate the effectiveness of the corrected HVSR in approximating observed linear amplifications in comparison with 1DSH modellings. We select a total of 90 KiK-net (Kiban Kyoshin network) surface-downhole sites which are found to have no velocity contrasts below their boreholes and thus of which surface-to-borehole spectral ratios (SBSRs) can be taken as their empirical transfer functions (ETFs). 1DSH-based theoretical transfer functions (TTFs) are computed in the linear domain considering uncertainties in Vs profiles through randomizations. Five goodness-of-fit metrics are adopted to gauge the closeness between observed (ETF) and predicted (i.e., TTF and corrected HVSR) amplifications in both amplitude and spectral shape over frequencies from f(0) to 25 Hz. We find that the empirical correction to HVSR is highly effective and achieves a "good match" in both spectral shape and amplitude at the majority of the 90 KiK-net sites, as opposed to less than one-third for the 1DSH modelling. In addition, the empirical correction does not require a velocity model, which GRAs require, and thus has great potentials in seismic hazard assessments. KW - site amplification KW - HVSR KW - ground response analysis KW - KiK-net KW - earthquake Y1 - 2020 U6 - https://doi.org/10.1016/j.soildyn.2020.106301 SN - 0267-7261 SN - 1879-341X VL - 139 PB - Elsevier CY - Oxford ER -