TY - JOUR A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Moffat, Anthony F. J. A1 - Eldridge, J. J. A1 - Pablo, H. A1 - Oskinova, Lida A1 - Richardson, N. D. T1 - Wolf-Rayet stars in the Small Magellanic Cloud II. Analysis of the binaries JF - American mineralogist : an international journal of earth and planetary materials N2 - Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (M-i greater than or similar to 20 M-circle dot) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims. By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods. The spectral analysis is performed with the PotsdamWolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results. Significant hydrogen mass fractions (0.1 < X-H < 0.4) are detected in all WN components. A comparison with mass-luminosity relations and evolutionary tracks implies that the majority of the WR stars in our sample are not chemically homogeneous. The WR component in the binary AB6 is found to be very luminous (log L approximate to 6.3 [L-circle dot]) given its orbital mass (approximate to 10 M-circle dot), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (greater than or similar to 60 M-circle dot) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions. Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at SMC metallicity. KW - stars: massive KW - stars: Wolf-Rayet KW - stars: evolution KW - binaries: close KW - binaries: symbiotic KW - Magellanic Clouds Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527916 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Richardson, N. D. A1 - Sablowski, Daniel P. A1 - Hainich, Rainer A1 - Sana, H. A1 - Moffat, A. F. J. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Sander, Andreas Alexander Christoph A1 - Tramper, Frank A1 - Langer, Norbert A1 - Bonanos, Alceste Z. A1 - de Mink, Selma E. A1 - Gräfener, G. A1 - Crowther, Paul A1 - Vink, J. S. A1 - Almeida, Leonardo A. A1 - de Koter, A. A1 - Barbá, Rodolfo A1 - Herrero, A. A1 - Ulaczyk, Krzysztof T1 - The tarantula massive binary monitoring BT - II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145 JF - Astronomy and astrophysics : an international weekly journal N2 - We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M-circle dot, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0 : 78 and minimum masses of M-1 sin(3) i approximate to M-2 sin(3) i = 13 +/- 2 M-circle dot, with q = M-2/M-1 = 1.01 +/- 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (i = 39 +/- 6 degrees). Our analysis thus implies M-1 = 53(-20)(+40) and M2 = 54(-20)(+40) M-circle dot, excluding M-1 > 300 M-circle dot. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of approximate to 80 M-circle dot and initial masses of M-i,M-1 approximate to 10(5) and M-i,M-2 approximate to 90 M-circle dot, consistent with the upper limits of our derived orbital masses, and would imply an age of approximate to 2.2 Myr. KW - binaries: spectroscopic KW - stars: Wolf-Rayet KW - stars: massive KW - Magellanic Clouds KW - stars: individual: R 145 KW - stars: atmospheres Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629621 SN - 1432-0746 VL - 598 PB - EDP Sciences CY - Les Ulis ER -