TY - JOUR A1 - Loew, Noya A1 - Bogdanoff, Peter A1 - Herrmann, Iris A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. A1 - Katterle, Martin T1 - Influence of modifications on the efficiency of pyrolysed CoTMPP as electrode material for horseradish peroxidase and the reduction of hydrogen peroxide JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - A tailor-made horseradish peroxidase (HRP) bulk composite electrode was developed on the basis of pyrolyzed cobalt tetramethoxyphenylporphyrin (CoTMPP) by modifying pore size and surface area of the porous carbon material through varying amounts of iron oxalate and sulfur prior to pyrolyzation. The materials were used to immobilize horseradish peroxidase (HRP). These electrodes were characterized in terms of their efficiency to reduce hydrogen peroxide. The heterogeneous electron transfer rate constants of different materials were determined with the rotating disk electrode method and a k(S) (401 +/- 61 s(-1)) exceeding previously reported values for native HRP was found. KW - cobalt porphyrin KW - electron transfer KW - horseradish peroxidase KW - hydrogen peroxide KW - immobilization Y1 - 2006 U6 - https://doi.org/10.1002/elan.200603664 SN - 1040-0397 VL - 18 IS - 23 SP - 2324 EP - 2330 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Peng, Lei A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Jeoung, Jae-Hun A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis JF - SENSORS N2 - For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 +/- 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). KW - hydrogen peroxide KW - bioelectrocatalysis KW - molecularly imprinted polymers KW - direct electron transfer KW - self-assembled monolayer Y1 - 2016 U6 - https://doi.org/10.3390/s16030272 SN - 1424-8220 VL - 16 SP - 1343 EP - 1364 PB - MDPI CY - Basel ER - TY - GEN A1 - Peng, Lei A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Jeoung, Jae-Hun A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Molecularly imprinted electropolymer for a hexameric heme protein with direct electron transfer and peroxide electrocatalysis N2 - For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of −184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 362 KW - molecularly imprinted polymers KW - self-assembled monolayer KW - direct electron transfer KW - hydrogen peroxide KW - bioelectrocatalysis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400627 ER -