TY - THES A1 - Menski, Antonia Isabell T1 - Europium als strukturelle Sonde zur Analyse neuartiger Materialien T1 - Europium as a structural probe for the analysis of novel materials N2 - Im Rahmen dieser Arbeit wird anhand von neuartigen Materialien das Potential der Europium-Lumineszenz für die strukturelle Analyse dargestellt. Bei diesen Materialien handelt es sich zum einen um Nanopartikel mit Matrizes aus mehreren Metall-Mischoxiden und Dotierungen durch die Sonde Europium und zum anderen um Metallorganische Netzwerke (MOFs), die mit Neodym , Samarium- und Europium-Ionen beladen sind. Die Synthese der aus der Kombination von Metalloxiden enthaltenen Nanopartikel ist unter milden Bedingungen mithilfe von speziell dafür hergestellten Reagenzien erfolgt und hat zu sehr kleinen, amorphen Nanopartikeln geführt. Durch eine nachfolgende Temperaturbehandlung hat sich die Kristallinität erhöht. Damit verbunden haben sich auch die Kristallstruktur sowie die Position des Dotanden Europium verändert. Während die etablierte Methode der Röntgendiffraktometrie einen Blick auf das Kristallgitter als Gesamtes ermöglicht, so trifft die Lumineszenz des Europiums durch die Sichtbarkeit einzelner Stark-Aufspaltungen Aussagen über dessen lokale Symmetrien. Die Symmetrie wird durch Sauerstofffehlstellen verändert, welche die Sauerstoffleitfähigkeit der Nanopartikel beeinflussen. Diese ist für die Anwendung als Katalysatoren in industriellen Prozessen und ebenso als Sensoren und Therapeutika in biologischen Systemen von Bedeutung. Zur ersten katalytischen Charakterisierung werden die Proben mittels Temperatur-programmierter Reduktion untersucht. Des Weiteren werden die Mischoxid-Nanopartikel auch hinsichtlich ihrer Verwendbarkeit als Matrix in Aufkonversionsprozessen untersucht. Die Metallorganischen Netzwerke eignen sich aufgrund ihrer mikroporösen Struktur für Anwendungen in der Speicherung gleichermaßen von Nutzgasen wie auch von Schadstoffen. Ebenfalls ist eine biologische Anwendung denkbar, die insbesondere den Bereich der drug delivery-Reagenzien betrifft. Erfolgt in die mikroporösen Strukturen der Metallorganischen Netzwerke die Einlagerung von Lanthanoid-Ionen, so können diese bei der entsprechenden Kombination als Weißlicht-Emittierer fungieren. Dabei ist neben den Verhältnissen zwischen den Lanthanoid-Ionen auch die genaue Position innerhalb des Netzwerks sowie die Distanz zu anderen Ionen von Interesse. Zur Untersuchung dieser Fragestellungen wird die Umgebungssensitivität der Europium-Lumineszenz ausgenutzt. Die auf diese Weise festgestellte Formiat-Bildung hängt von zahlreichen Parametern ab. Insgesamt stellt sich die im Rahmen dieser Arbeit verwendete Methodik des Einsatzes von Europium als strukturelle Sonde in höchstem Maße vielseitig dar und zeigt seine größte Stärke in der Kombination mit weiteren Methoden der Strukturanalytik. Die auf diese Weise genauestens charakterisierten neuartigen Materialien können nun gezielt und anwendungsfokussiert weiterentwickelt werden. N2 - In this work the potential of the luminescence of europium for structural analysis using novel materials is presented. These materials are on the one hand side nanoparticles made of various metal mixed oxide and doped by europium as a structural probe and on the other hand side the so-called metal organic frameworks (MOFs) loaded with neodymium, samarium and europium ions. The synthesis of the metal mixed oxide nanoparticles is done under mild conditions using reagents that have been specifically produced for this application. It leads to very small and amorphous nanoparticles. The crystallinity is increased by downstreamed temperature treatment. Related to that, the crystal structure and the position of the europium dopant have changed. While the well-established method of X-ray-diffraction offers an insight to the whole crystal lattice, the luminescence of europium gives information about the local symmetry of single europium ions using the visibility of single Stark-splittings. The symmetry is changed by oxygen vacancies which have an influence on the oxygen conductivity of the nanoparticles. This property is important for the application in industrial catalysts as well as in sensors and therapeutic agents in biological systems. For basic catalytical characterisation the samples are examined using the method of temperature-programmed reduction. Furthermore, the metal mixed oxide nanoparticles are also evaluated concerning the usability of the matrix in upconversion-processes. The metal organic frameworks are suitable for the storage of technical gases and pollutants due to their microporous structure. An application in the biological context can be seen especially in the field of drug delivery agents. By intercalation of certain combinations of lanthanide ions in the microporous structure of the metal organic frameworks, white light emitters can be developed. In this application the ratio between the lanthanide ions as well as their exact position within the framework and the distance between the single ions are of interest. For unravelling the regarding open questions, the environment-sensitive luminescence of the europium is used. The determined formate formation depends on several parameters. To sum up, the method of using europium as a structural probe as shown in this work is highly versatile and proves its worth in combination with further methods of structural analysis. Furthermore, an advanced development of the novel materials with focus on specific applications is now well prepared due to precise characterisation. KW - Spektroskopie KW - Nanomaterialien KW - Ceroxid KW - metallorganische Netzwerke KW - spectroscopy KW - nanomaterials KW - cerium oxide KW - metal organic frameworks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427141 ER - TY - THES A1 - Haseeb, Haider T1 - Charge and heat transport across interfaces in nanostructured porous silicon T1 - Ladungs- und Wärmetransport über Grenzflächen in nanostrukturiertem porösem Silizium N2 - This thesis discusses heat and charge transport phenomena in single-crystalline Silicon penetrated by nanometer-sized pores, known as mesoporous Silicon (pSi). Despite the extensive attention given to it as a thermoelectric material of interest, studies on microscopic thermal and electronic transport beyond its macroscopic characterizations are rarely reported. In contrast, this work reports the interplay of both. PSi samples synthesized by electrochemical anodization display a temperature dependence of specific heat 𝐶𝑝 that deviates from the characteristic 𝑇^3 behaviour (at 𝑇<50𝐾). A thorough analysis reveals that both 3D and 2D Einstein and Debye modes contribute to this specific heat. Additional 2D Einstein modes (~3 𝑚𝑒𝑉) agree reasonably well with the boson peak of SiO2 in pSi pore walls. 2D Debye modes are proposed to account for surface acoustic modes causing a significant deviation from the well-known 𝑇^3 dependence of 𝐶𝑝 at 𝑇<50𝐾. A novel theoretical model gives insights into the thermal conductivity of pSi in terms of porosity and phonon scattering on the nanoscale. The thermal conductivity analysis utilizes the peculiarities of the pSi phonon dispersion probed by the inelastic neutron scattering experiments. A phonon mean-free path of around 10 𝑛𝑚 extracted from the presented model is proposed to cause the reduced thermal conductivity of pSi by two orders of magnitude compared to p-doped bulk Silicon. Detailed analysis indicates that compound averaging may cause a further 10-50% reduction. The percolation threshold of 65% for thermal conductivity of pSi samples is subsequently determined by employing theoretical effective medium models. Temperature-dependent electrical conductivity measurements reveal a thermally activated transport process. A detailed analysis of the activation energy 𝐸𝐴𝜎 in the thermally activated transport exhibits a Meyer Neldel compensation rule between different samples that originates in multi-phonon absorption upon carrier transport. Activation energies 𝐸𝐴𝑆 obtained from temperature-dependent thermopower measurements provide further evidence for multi-phonon assisted hopping between localized states as a dominant charge transport mechanism in pSi, as they systematically differ from the determined 𝐸𝐴𝜎 values. N2 - Diese Dissertation befasst sich mit Wärme- und Ladungstransportphänomenen in mesoporösem Silizium (pSi) oder etwas genauer in einkristallinem Silizium, welches mit nanometergroßen Poren durchsetzt ist. Trotz der großen Aufmerksamkeit, die diesem thermoelektrischen Material zuteil wird, wird nur selten über Studien zum mikroskopischen thermischen und elektronischen Transport jenseits seiner makroskopischen Charakterisierung berichtet. Im Gegensatz dazu wird in dieser Studie das Zusammenspiel von beidem untersucht. PSi-Proben, die durch elektrochemische Anodisierung synthetisiert wurden, zeigen eine Temperaturabhängigkeit der spezifischen Wärme 𝐶𝑝, die vom charakteristischen 𝑇3 Verhalten (bei 𝑇<50𝐾) abweicht. Eine gründliche Analyse zeigt, dass sowohl 3D- als auch 2D-Einstein- und Debye-Moden zu dieser spezifischen Wärme beitragen. Zusätzliche 2D-Einstein-Moden (~3 𝑚𝑒𝑉) stimmen gut mit dem Bosonen-Peak von SiO2 in teilweise oxidierten pSi-Porenwänden überein. 2D-Debye-Moden werden vorgeschlagen, um akustische Oberflächenmoden zu erklären, die eine signifikante Abweichung von der bekannten 𝑇3Abhängigkeit von 𝐶𝑝 bei 𝑇<50𝐾 verursachen. Ein neuartiges theoretisches Modell gibt Einblicke in die Wärmeleitfähigkeit von pSi in Bezug auf Porosität und Phononenstreuung auf der Nanoskala. Die Analyse der Wärmeleitfähigkeit nutzt die Besonderheiten der pSi-Phononendispersion, die durch Experimente mit inelastischer Neutronenstreuung untersucht wurden. Ein mittlerer freier Weg der Phononen von etwa 10 𝑛𝑚, der aus dem vorgestellten Modell extrahiert wurde, wird als Ursache für die um zwei Größenordnungen geringere Wärmeleitfähigkeit von pSi im Vergleich zu p-dotiertem Silizium vorgeschlagen. Eine detaillierte Analyse zeigt, dass die Porosität selbst eine weitere Verringerung der Wärmeleitfähigkeit um 10-50% verursachen kann. Die Perkolationsschwelle von 65 % für die Wärmeleitfähigkeit von pSi-Proben wird anschließend mit Hilfe eines theoretischen Ansatzes für effektive Medien bestimmt. Temperaturabhängige Messungen der elektrischen Leitfähigkeit lassen einen thermisch aktivierten Transportprozess erkennen. Eine detaillierte Analyse der Aktivierungsenergie 𝐸𝐴𝜎 im thermisch aktivierten Transport zeigt eine Meyer-Neldel-Kompensationsregel zwischen verschiedenen Proben, die auf Multiphononenabsorption beim Ladungsträgertransport zurückzuführen ist. Aktivierungsenergien 𝐸𝐴𝑆, die aus temperaturabhängigen Seebeck-Messungen gewonnen wurden, liefern weitere Beweise für Multiphononen-unterstütztes Springen zwischen lokalisierten Zuständen als dominanten Ladungstransportmechanismus in pSi, da sie sich systematisch von den ermittelten 𝐸𝐴𝜎 Werten unterscheiden. KW - mesoporous KW - silicon KW - Meyer-Neldel-rule KW - nanomaterials KW - Meyer-Neldel-Regel KW - mesoporös KW - Nanomaterialien KW - Silizium Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611224 ER -