TY - THES A1 - Fandrich, Artur T1 - Untersuchung des Verhaltens von thermoresponsiven Polymeren auf Elektroden in Interaktion mit biomolekularen Systemen T1 - Investigation of the behavior of thermoresponsive polymers on electrodes in interaction with biomolecular systems N2 - Diese Arbeit befasst sich mit der Herstellung und Charakterisierung von thermoresponsiven Filmen auf Goldelektroden durch Fixierung eines bereits synthetisierten thermoresponsiven Polymers. Als Basis für die Entwicklung der responsiven Grenzfläche dienten drei unterschiedliche Copolymere (Polymere I, II und III) aus der Gruppe der thermisch schaltbaren Poly(oligo(ethylenglykol)methacrylate). Die turbidimetrischen Messungen der Copolymere in Lösungen haben gezeigt, dass der Trübungspunkt vom pH-Wert, der Gegenwart von Salzen sowie von der Ionenstärke der Lösung abhängig ist. Nach der Charakterisierung der Polymere in Lösung wurden Experimente der kovalenten Kopplung der Polymere I bis III an die Oberfläche der Gold-Elektroden durchgeführt. Während bei Polymeren I und II die Ankopplung auf einer Amidverbrückung basierte, wurde bei Polymer III als alternative Methode zur Immobilisierung eine photoinduzierte Anbindung unter gleichzeitiger Vernetzung gewählt. Der Nachweis der erfolgreichen Ankopplung erfolgte bei allen Polymeren elektrochemisch mittels Cyclovoltammetrie und Impedanzspektroskopie in K3/4[Fe(CN)6]-Lösungen. Wie die Ellipsometrie-Messungen zeigten, waren die erhaltenen Polymer-Filme unterschiedlich dick. Die Ankopplung über Amidverbrückung lieferte dünne Filme (10 – 15 nm), während der photovernetzte Film deutlich dicker war (70-80 nm) und die darunter liegende Oberfläche relativ gut isolierte. Elektrochemische Temperaturexperimente an Polymer-modifizierten Oberflächen in Lösungen in Gegenwart von K3/4[Fe(CN)6] zeigten, dass auch die immobilisierten Polymere I bis III responsives Temperaturverhalten zeigen. Bei Elektroden mit den immobilisierten Polymeren I und II ist der Temperaturverlauf der Parameterwerte diskontinuierlich – ab einem kritischen Punkt (37 °C für Polymer I und 45 °C für Polymer II) wird zunächst langsame Zunahme der Peakströme wird deutlich schneller. Das Temperaturverhalten von Polymer III ist dagegen bis 50 °C kontinuierlich, der Peakstrom sinkt hier durchgehend. Weiterhin wurde mit den auf Polymeren II und III basierten Elektroden deren Anwendung als responsive Matrix für Bioerkennungsreaktionen untersucht. Es wurde die Ankopplung von kleinen Biorezeptoren, TAG-Peptiden, an Polymer II- und Polymer III-modifizierten Elektroden durchgeführt. Das hydrophile FLAG-TAG-Peptid verändert das Temperaturverhalten des Polymer II-Films unwesentlich, da es die Hydrophilie des Netzwerkes nicht beeinflusst. Weiterhin wurde der Effekt der Ankopplung der ANTI-FLAG-TAG-Antikörper an FLAG-TAG-modifizierte Polymer II-Filme untersucht. Es konnte gezeigt werden, dass die Antikörper spezifisch an FLAG-TAG-modifiziertes Polymer II binden. Es wurde keine unspezifische Anbindung von ANTI-FLAG-TAG an Polymer II beobachtet. Die Temperaturexperimente haben gezeigt, dass die thermische Restrukturierung des Polymer II-FLAG-TAG-Filmes auch nach der Antikörper-Ankopplung noch stattfindet. Der Einfluss der ANTI-FLAG-TAG-Ankopplung ist gering, da der Unterschied in der Hydrophilie zwischen Polymer II und FLAG-TAG bzw. ANTI-FLAG-TAG zu gering ist. Für die Untersuchungen mit Polymer III-Elektroden wurde neben dem hydrophilen FLAG-TAG-Peptid das deutlich hydrophobere HA-TAG-Peptid ausgewählt. Wie im Falle der Polymer II Elektrode beeinflusst das gekoppelte FLAG-TAG-Peptid das Temperaturverhalten des Polymer III-Netzwerkes nur geringfügig. Die gemessenen Stromwerte sind geringer als bei der Polymer III-Elektrode. Das Temperaturverhalten der FLAG-TAG-Elektrode ähnelt dem der reinen Polymer III-Elektrode – die Stromwerte sinken kontinuierlich bis die Temperatur von ca. 40 °C erreicht ist, bei der ein Plateau beobachtet wird. Offensichtlich verändert FLAG-TAG auch in diesem Fall nicht wesentlich die Hydrophilie des Polymer III-Netzwerkes. Das an Polymer III-Elektroden gekoppelte hydrophobe HA-TAG-Peptid beeinflusst dagegen im starken Maße den Quellzustand des Netzwerkes. Die Ströme für die HA-TAG-Elektroden sind deutlich geringer als die für die FLAG-TAG-Polymer III-Elektroden, was auf geringeren Wassergehalt und dickeren Film zurückzuführen ist. Bereits ab 30 °C erfolgt der Anstieg von Stromwerten, der bei Polymer III- bzw. bei Polymer III-FLAG-TAG-Elektroden nicht beobachtet werden kann. Das gekoppelte hydrophobe HA-TAG-Peptid verdrängt Wasser aus dem Polymer III-Netzwerk, was in der Stauchung des Films bereits bei Raumtemperatur resultiert. Dies führt dazu, dass der Film im Laufe des Temperaturanstieges kaum noch komprimiert. Die Stromwerte steigen in diesem Fall entsprechend des Anstiegs der temperaturabhängigen Diffusion des Redoxpaares. Diese Untersuchungen zeigen, dass das HA-TAG-Peptid als Ankermolekül deutlich besser für eine potentielle Verwendung der Polymer III-Filme für sensorische Zwecke geeignet ist, da es sich deutlich in der Hydrophilie von Polymer III unterscheidet. N2 - This work describes the immobilization and characterization of thermoresponsive polymer films on gold electrodes. The immobilized films were thermoresponsive copolymers (polymers I, II and III) from the group of poly(oligo(ethylene glycol)methacrylates). After the synthesis, the aqueous solutions of copolymers in presence of (buffering) salts were investigated. The turbidimetry measurements revealed that the responsive behaviour of the polymers strongly depends on the pH and the ionic strength of the solution. After the studies in the solution, experiments on the covalent immobilization of the polymers on gold electrodes were performed. The fixation strategy for the polymers I and II was based on the amide coupling. The polymer III was immobilized by irradiation with UV-light. The successful immobilization was proved by cyclic voltammetry and electrochemical impedance spectroscopy measurements in solutions containing K3/4[Fe(CN)6]. The ellipsometry measurements showed that the obtained films were of different thickness. Polymer I and II films obtained from the amide coupling were thinner (10 – 15 nm) compared to photolytically immobilized polymer III films (70-80 nm). Electrochemical temperature experiments on polymer modified electrodes in K3/4[Fe(CN)6] solutions showed that the polymer I, II and III retain the responsivity after the fixation on the electrode surface. The thermoresponsive behaviour of the thin polymer I and II films is discontinuous – after the achieving of the critical temperature point (37 °C for polymer I and 45 °C for polymer II) the increase of the peak currents changes significantly and becomes faster hinting at the restructuration process. In contrast to this the temperature behaviour of the polymer III films is continuous in the temperature range between 25 and 50 °C. The peak currents for the polymer III electrodes decrease with increasing temperature. Furthermore, the application of polymer II and polymer III surfaces as a responsive platform for bio-recognition reactions was investigated. For this purpose, the coupling of small bioreceptors (tag peptides) on polymer films was performed. It was found that the hydrophilic FLAG-TAG peptide does not significantly alter the temperature behaviour of the polymer II film because it does not affect the hydrophilicity of the network. Additionally, the effect of coupling the ANTI-FLAG-TAG antibodies to FLAG-TAG-modified polymer II films was investigated. It was shown that the antibodies specifically bind to FLAG-TAG-modified polymer II. No nonspecific binding of ANTI-FLAG-TAG to polymer II was observed. The temperature experiments have shown that the thermal restructuring of the polymer II-FLAG-TAG film still takes place after antibody coupling. The influence of ANTI-FLAG-TAG coupling is low, since the difference in the hydrophilicity between polymer II and FLAG-TAG or ANTI-FLAG-TAG is too low. In addition to the hydrophilic FLAG-TAG peptide, the significantly more hydrophobic HA-TAG peptide was selected for the investigations with polymer III electrodes. As in the case of the polymer II electrode, the coupled FLAG-TAG peptide only slightly affects the temperature behaviour of the polymer III network. The measured current values are lower than for the polymer III electrode. The temperature behaviour of the FLAG-TAG electrode resembles that of the pure polymer III electrode - the current values sink continuously until the temperature of approx. 40 ° C is reached, at which a plateau is observed. Obviously, FLAG-TAG does not significantly alter the hydrophilicity of the polymer III network even in this case. The hydrophobic HA-TAG peptide coupled to polymer III electrodes, on the other hand, strongly influences the swelling state of the network. The currents for the HA-TAG electrodes are significantly lower than those for the FLAG-TAG polymer III electrodes, which is due to lower water content and thicker film. The increase in current values occurs at temperatures as low as 30 ° C, which cannot be observed with polymer III or with polymer III FLAG TAG electrodes. The coupled hydrophobic HA-TAG peptide displaces water from the polymer III network, resulting in the compression of the film even at room temperature. As a result, the film hardly compresses during the temperature rise. The current values increase in this case according to the increase in the temperature-dependent diffusion of the redox pair. These studies show that the HA-TAG peptide as an anchoring molecule is much better suited for a potential use of the polymer III films for sensory purposes since it is clearly different in the hydrophilicity of polymer III. KW - thermoresponsiv KW - Polymer KW - Biosensor KW - Cyclovoltammetrie KW - Elektrochemie KW - thermoresponsive KW - polymer KW - biosensor KW - cyclic voltammetry KW - electrochemistry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396551 ER - TY - THES A1 - Loew, Noya T1 - Meerrettich Peroxidase : Modifikationen und Anwendungen in Biosensoren T1 - Horseradish Peroxidase : modifications and applications in biosensors N2 - Biosensoren werden oft für die Messung einzelner Substanzen in komplexen Medien verwendet, wie z.B. bei der Blutzuckerbestimmung. Sie bestehen aus einem physikochemischen Sensor, dem Transduktionselement, und einer darauf immobilisierten biologischen Komponente, dem Erkennungselement. In dieser Arbeit wurde als Transduktionselement eine Elektrode und als Biokomponente das Enzym „Meerrettich Peroxidase“ (engl. horseradish peroxidase, HRP) verwendet. Solche HRP-Elektroden werden für die Messung von Wasserstoffperoxid (H2O2) eingesetzt. H2O2 wird im Körper von weißen Blutkörperchen produziert, um Bakterien abzutöten, wird teilweise ausgeatmet und kann in kondensierter Atemluft nachgewiesen werden. Da viele weiße Blutkörperchen bei einer Chemotherapie abgetötet und dadurch die Patienten anfälliger für Infektionen werden, muss ihre Anzahl regelmäßig überwacht werden. Dazu wird zurzeit Blut abgenommen. Im ersten Teil dieser Arbeit wurde untersucht, ob eine Überwachung der Anzahl an weißen Blutkörperchen ohne Blutabnahme durch eine H2O2-Messung erfolgen kann. Ein direkter Zusammenhang zwischen der ausgeatmeten H2O2-Menge und der Zahl der weißen Blutkörperchen konnte dabei nicht festgestellt werden. Für empfindliche H2O2-Messungen mit einer HRP-Elektrode ist ein schneller Austausch von Elektronen zwischen der Elektrode und dem Enzym notwendig. Eine Vorraussetzung dafür ist eine kurze Distanz zwischen dem aktiven Zentrum des Enzyms und der Elektrodenoberfläche. Um einen kurzen Abstand zu erreichen wurden im zweiten Teil dieser Arbeit verschiedene poröse graphitähnliche Materialien aus pyrolysierten Kobalt-Porphyrinen für die Elektrodenherstellung verwendet. Dabei stellte sich heraus, dass eines der untersuchten Materialien, welches Poren von etwa der Größe eines Enzyms hat, Elektronen etwa 200mal schneller mit dem Enzym austauscht als festes Graphit. Die HRP selbst enthält in seinem aktiven Zentrum ein Eisen-Protoporphyrin, also ein aus vier Ringen bestehendes flaches Molekül mit einem Eisenatom im Zentrum. Reagiert die HRP mit H2O2, so entzieht es dem Peroxid zwei Elektronen. Eines dieser Elektronen wird am Eisen, das andere im Ringsystem zwischengespeichert, bevor sie an ein anderes Molekül oder an die Elektrode weitergegeben werden. Im letzten Teil dieser Arbeit wurde das Eisen durch Osmium ausgetauscht. Das so veränderte Enzym entzieht Peroxiden nur noch ein Elektron. Dadurch reagiert es zwar langsamer mit Wasserstoffperoxid, dafür aber schneller mit tert-Butylhydroperoxid, einem organischen Vertreter der Peroxid-Familie. N2 - Biosensors are often used for the measurement of specific substances in complex media, e.g. glucose in blood. They consist of a physicochemical sensor, the transducer, onto which a biological component, the recognition element, is immobilised. In this work, an electrode was used as transducer and the enzyme “horseradish peroxidase” (HRP) as biological component. Such HRP electrodes are used for the measurement of hydrogen peroxide (H2O2). H2O2 is produced in the body by white blood cells to destroy bacteria, is partially exhaled and can be measured in breath condensate. Since a lot of white blood cells are destroyed during chemotherapy and patients get more prone to infections, their amount must be checked regularly. Currently blood samples are taken for this purpose. In the first part of this work it was investigated, if the amount of white blood cells can be checked without taking blood by measuring H2O2. A correlation between the amount of exhaled H2O2 and the number of white blood cells could not be found. For a sensitive H2O2 measurement with an HRP electrode a quick exchange of electrons between electrode and enzyme is needed. One condition for this is a short distance between the active centre of the enzyme and the electrode surface. In order to achieve a short distance, several porous graphite-like materials made of pyrolysed cobalt porphyrins where used in the second part of this work for the electrode production. It turned out that one of the tested materials, which had pores about the same size as the enzyme, did exchange electrons with the enzyme about 200 times faster than solid graphite. HRP itself contains an iron protoporphyrin, i.e. a planar molecule consisting of four rings with an iron atom in the middle, its active centre. When HRP reacts with H2O2, it takes two electrons from the peroxide. One of these electrons is stored at the iron, the other in the ring system, until they are passed on to another molecule or the electrode. In the last part of this work, the iron was exchanged with osmium. The modified enzyme takes only one electron from peroxides. Thus it reacts slower with hydrogen peroxide, but faster with tert-butylhydroperoxide, an organic member of the peroxide family. KW - Peroxidase KW - Biosensor KW - Elektrochemie KW - Porphyrin KW - Peroxid KW - Peroxidase KW - Biosensor KW - Electrochemistry KW - Porphyrin KW - Peroxide Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18430 ER - TY - THES A1 - Knoche, Lisa T1 - Untersuchung von Transformationsprodukten ausgewählter Tierarzneimittel generiert durch Elektrochemie, Mikrosomal Assay, Hydrolyse und Photolyse T1 - Investigation of transformation products of selected veterinary drugs generated by electrochemistry, microsomal assays, hydrolysis & photolysis N2 - The knowledge of transformation pathways and transformation products of veterinary drugs is important for health, food and environmental matters. Residues, consisting of original veterinary drug and transformation products, are found in food products of animal origin as well as the environment (e.g., soil or surface water). Several transformation processes can alter the original veterinary drug, ranging from biotransformation in living organism to environmental degradation processes like photolysis, hydrolysis, or microbial processes. In this thesis, four veterinary drugs were investigated, three ionophore antibiotics Monensin, Salinomycin and Lasalocid and the macrocyclic lactone Moxidectin. Ionophore antibiotics are mainly used to cure and prevent coccidiosis in poultry especially prophylactic in broiler farming. Moxidectin is an antiparasitic drug that is used for the treatment of internal and external parasites in food-producing and companion animals. The main objective of this work is to employ different laboratory approaches to generate and identify transformation products. The identification was conducted using high-resolution mass spectrometry (HRMS). A major focus was placed on the application of electrochemistry for simulation of transformation processes. The electrochemical reactor – equipped with a three-electrode flow-through cell – enabled the oxidation or reduction by applying a potential. The transformation products derived were analyzed by online coupling of the electrochemical reactor and a HRMS and offline by liquid chromatography (LC) combined with HRMS. The main modification reaction of the identified transformation products differed for each investigated veterinary drug. Monensin showed decarboxylation and demethylation as the main modification reactions, for Salinomycin mostly decarbonylation occurred and for Lasalocid methylation was prevalent. For Moxidectin, I observed an oxidation (hydroxylation) reaction and adduct formation with solvent. In general, for Salinomycin and Lasalocid, more transient transformation products (online measurement) than stable transformation products (offline measurements) were detected. By contrast, the number of transformation products using online and offline measurements were identical for Monensin and Moxidectin. As a complementary approach, metabolism tests with rat or human liver microsomes were conducted for the ionophore antibiotics. Monensin was investigated by using rat liver microsomes and the transformation products identified were based on decarboxylation and demethylation. Salinomycin and Lasalocid were converted by human and rat liver microsomes. For both substances, more transformation products were found by using human liver microsomes. The transformation products of the rat liver microsome conversion were redundant, and the transformation products were also found at the human liver microsome assay. Oxidation (hydroxylation) was found to be the main modification reaction for both. In addition, a frequent ion exchange between sodium and potassium was identified. The final two experiments were performed for one substance each, whereby the hydrolysis of Monensin and the photolysis of Moxidectin was investigated. The transformation products of the pH-dependent hydrolysis were based on ring-opening and dehydration. Moxidectin formed several transformation products by irradiation with UV-C light and the main modification reactions were isomeric changes, (de-)hydration and changes of the methoxime moiety. In summary, transformation products of the four investigated veterinary drugs were generated by the different laboratory approaches. Most of the transformation products were identified for the first time. The resulting findings provide an improved understanding of clarifying the transformation behavior. N2 - Das Wissen über die Entstehung und Identifizierung von Transformationsprodukten von Tierarzneimitteln ist wichtig für Gesundheit, Lebensmittel und Umwelt. Rückstände, dazu zählen die Ausgangssubstanzen und gebildete Transformationsprodukte, werden in tierischen Produkten und in Umweltproben (zum Beispiel im Boden oder in Oberflächengewässern) nachgewiesen. Verschiedenste Transformationsprozesse verändern die Ausgangssubstanz, dazu zählen Biotransformationsprozesse von Lebewesen bis hin zu Abbauprozesse in der Umwelt, wie Photolyse, Hydrolyse oder mikrobielle Umwandlungen. Die Tierarzneimittel, die im Rahmen dieser Arbeit untersucht wurden, sind drei Ionophore Antibiotika: Monensin, Salinomycin und Lasalocid. Des Weiteren war das makrozyklische Lakton Moxidectin Teil der Untersuchung. Ionophore Antibiotika werden gegen Kokzidiose vor allem in der Geflügelzucht genutzt. Der oftmals prophylaktische Einsatz erfolgt als Futtermittelzusatz. Das Antiparasitikum Moxidectin wird hingegen für die Behandlung gegen interne and externe Parasiten bei Nutz- und Haustieren eingesetzt. Das Ziel dieser Arbeit war es, Transformationsprodukte zu identifizieren, welche durch verschiedene Experimente im Labor generiert werden. Zur Identifizierung wurde hochaufgelöste Massenspektrometrie genutzt, zur Strukturaufklärung wurden MS/MS-Spektren ausgewertet. Hauptaugenmerk lag auf der Simulation von Transformationsprozessen durch Elektrochemie. In der Durchflusszelle des elektrochemischen Reaktors werden Oxidations- oder Reduktionsprozesse durch Anlegung eines Potentials ermöglicht. Die Analyse der entstehenden Transformationsprodukte erfolgt entweder durch die direkte Kopplung zwischen dem elektrochemischen Reaktor und dem Massenspektrometer oder offline, wobei das Eluat des elektrochemischen Reaktors mittels Flüssigkeitschromatographie-Massenspektrometrie analysiert wird. Für jedes Tierarzneimittel kann eine typische Modifizierung, welche zur Bildung des Transformationsproduktes führt, identifiziert werden. Die elektrochemisch induzierte Modifikation von Monensin ist Decarboxylierung und Demethylierung. Salinomycin weist Decarbonylierung auf und Lasalocid Methylierung. Für Moxidectin wurden Oxidation (Hydroxylierung) und Adduktbildung mit Lösemittelmolekülen gefunden. Im Allgemeinen wurden bei Salinomycin und Lasalocid mehr instabile Transformationsprodukte (online Kopplung) gefunden als stabile Transformationsprodukte (offline Messung). Im Gegensatz dazu ist die Zahl der detektierten Transformationsprodukte (online und offline) gleich für Monensin und Moxidectin. Als Weiteres wurden für die Ionophore Antibiotika Metabolismustests mit Ratten- bzw. menschlichen Lebermikrosomen durchgeführt. Monensin wurde nur mit Rattenlebermikrosomen umgesetzt und die entstandenen Transformations-produkte basieren auf Decarboxylierung und Demethylierung. Transformations-produkte von Salinomycin und Lasalocid wurden durch Tests mit Ratten- und menschlichen Lebermikrosomen generiert. Bei der Umsetzung mit den Rattenlebermikrosomen wurden identische Transformationsprodukte gefunden im Vergleich zur Umsetzung mit den menschlichen Lebermikrosomen. Neben der Oxidation (Hydroxylierung), als am meisten vorkommende Modifizierung, wurde für beide Ionophore ein Ionenaustausch zwischen Natrium und Kalium festgestellt. Zuletzt wurde die Hydrolyse von Monensin und die Photolyse von Moxidectin untersucht. Die gebildeten Transformationsprodukte der pH-abhängigen Hydrolyse von Monensin basieren auf Ringöffnungsreaktionen und Wasserabspaltung. Eine Vielzahl an Transformationsprodukten von Moxidectin zeigt sich nach der Bestrahlung mit UV-C Licht. Als Modifizierung treten Veränderungen der Stereochemie auf, Wasseranlagerung bzw. Abspaltung, und Veränderungen an der Methyloxim-Gruppe auf. Zusammengefasst wurden verschiedenste Transformationsprodukte der vier gewählten Tierarzneimittel durch unterschiedliche Experimente gebildet. Die meisten Transformationsprodukte wurden im Rahmen dieser Arbeit erstmals identifiziert, vor allem die elektrochemische Erzeugung der Transformationsprodukte wurde erstmals untersucht. Die resultierenden Ergebnisse führen zu einem weiterführenden Verständnis zur Aufklärung des Transformationsverhaltens. KW - Transformation product KW - Veterinary drugs KW - Electrochemistry KW - Microsomal KW - Assay High-resolution mass spectrometry KW - Transformationsprodukt KW - Tierarzneimittel KW - Elektrochemie KW - Mikrosomal KW - Assay hochauflösende Massenspektrometrie Y1 - 2022 ER - TY - THES A1 - Wegerich, Franziska T1 - Engineered human cytochrome c : investigation of superoxide and protein-protein interaction and application in bioelectronic systems T1 - Gentechnisch verändertes humanes Cytochrom c :Untersuchungen von Superoxid und Protein-Protein-Interaktionen sowie der Anwendung in bioelektronischen Systemen N2 - The aim of this thesis is the design, expression and purification of human cytochrome c mutants and their characterization with regard to electrochemical and structural properties as well as with respect to the reaction with the superoxide radical and the selected proteins sulfite oxidase from human and fungi bilirubin oxidase. All three interaction partners are studied here for the first time with human cyt c and with mutant forms of cyt c. A further aim is the incorporation of the different cyt c forms in two bioelectronic systems: an electrochemical superoxide biosensor with an enhanced sensitivity and a protein multilayer assembly with and without bilirubin oxidase on electrodes. The first part of the thesis is dedicated to the design, expression and characterization of the mutants. A focus is here the electrochemical characterization of the protein in solution and immobilized on electrodes. Further the reaction of these mutants with superoxide was investigated and the possible reaction mechanisms are discussed. In the second part of the work an amperometric superoxide biosensor with selected human cytochrome c mutants was constructed and the performance of the sensor electrodes was studied. The human wild-type and four of the five mutant electrodes could be applied successfully for the detection of the superoxide radical. In the third part of the thesis the reaction of horse heart cyt c, the human wild-type and seven human cyt c mutants with the two proteins sulfite oxidase and bilirubin oxidase was studied electrochemically and the influence of the mutations on the electron transfer reactions was discussed. Finally protein multilayer electrodes with different cyt form including the mutant forms G77K and N70K which exhibit different reaction rates towards BOD were investigated and BOD together with the wild-type and engineered cyt c was embedded in the multilayer assembly. The relevant electron transfer steps and the kinetic behavior of the multilayer electrodes are investigated since the functionality of electroactive multilayer assemblies with incorporated redox proteins is often limited by the electron transfer abilities of the proteins within the multilayer. The formation via the layer-by-layer technique and the kinetic behavior of the mono and bi-protein multilayer system are studied by SPR and cyclic voltammetry. In conclusion this thesis shows that protein engineering is a helpful instrument to study protein reactions as well as electron transfer mechanisms of complex bioelectronic systems (such as bi-protein multilayers). Furthermore, the possibility to design tailored recognition elements for the construction of biosensors with an improved performance is demonstrated. N2 - Ziel dieser Arbeit ist es genetisch veränderte Formen von humanem Cytochrom c herzustellen und diese einerseits hinsichtlich der Reaktion mit dem Sauerstoff-Radikal Superoxid aber auch mit anderen Proteinen zu untersuchen. Zusätzlich sollen die verschiedenen Protein-Mutanten in neuartige bioelektronische Systeme eingebracht werden. Es wurden insgesamt 20 Cytochrome c Mutanten designt, rekombinant exprimiert und aufgereinigt. Es konnte in dieser Arbeit gezeigt werden, dass sich die Reaktion von Cytochrom c mit dem negativ geladenen Superoxid durch gezielte Mutationen, die zusätzliche positive Ladungen in das Molekül bringen, um bis zu 30 % erhöhen lässt. Es wurde aber auch deutlich, dass andere Eigenschaften des Proteins sowie dessen Struktur durch die Mutationen geändert werden können. Cytochrom c Mutanten mit einer erhöhten Reaktionsrate mit Superoxid konnten erfolgreich in einen Superoxid-Biosensor mit erhöhter Sensitivität eingebracht werden. Weiterhin wurde einige Mutanten hinsichtlich Ihrer Interaktion mit den zwei Enzymen Sulfitoxidase und Bilirubinoxidase untersucht. Hier konnten ebenfalls unterschiedliche Reaktivitäten festgestellt werden. Schließlich wurden ausgewählte Protein-Varianten mit und ohne den zuvor untersuchten Enzymen in ein Multischicht-Elektroden-System eingebettet und dessen kinetisches Verhalten untersucht. Es wurde gefunden, dass die Schnelligkeit mit der Cytochrom c mit sich selbst Elektronen austauschen kann, eine Limitierung der Größenordnung der katalytischen Ströme darstellt. Diese Selbstaustausschrate wurde durch die eingeführten Mutationen verändert. So verdeutlicht diese Arbeit, dass „Protein-Engineering“ ein gutes Hilfsmittel sein kann, um einerseits Proteinreaktionen und komplexe Elektronentransferreaktionen in Multischichten zu untersuchen, aber auch ein potentes Werkzeug darstellt mit dem zugeschnittene Biokomponenten für Sensoren mit erhöhter Leistungsfähigkeit generiert werden können. KW - Cytochrom c KW - Protein-Engineering KW - Elektrochemie KW - Biosensor KW - Superoxid KW - cytochrome c KW - protein engineering KW - electrochemistry KW - biosensor KW - superoxide Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50782 ER - TY - THES A1 - Ilic, Ivan T1 - Design of sustainable cathodes for Li-ion batteries T1 - Design nachhaltiger Kathoden für Li-Ionen-Batterien BT - understanding the redox behaviour of guaiacyl and catecholic groups in lithium organic system N2 - In recent years people have realised non-renewability of our modern society which relays on spending huge amounts of energy mostly produced from fosil fuels, such as oil and coal, and the shift towards more sustainable energy sources has started. However, sustainable sources of energy, such as wind-, solar- and hydro-energy, produce primarily electrical energy and can not just be poured in canister like many fosil fuels, creating necessity for rechragable batteries. However, modern Li-ion batteries are made from toxic heavy metals and sustainable alternatives are needed. Here we show that naturally abundant catecholic and guaiacyl groups can be utilised to replace heavy metals in Li-ion batteries. Foremost vanillin, a naturally occurring food additive that can be sustainably synthesised from industrial biowaste, lignin, was utilised to synthesise materials that showed extraordinary performance as cathodes in Li-ion batteries. Furthermore, behaviour of catecholic and guiacyl groups in Li-ion system was compared, confirming usability of guiacayl containing biopolymers as cathodes in Li-ion batteries. Lastly, naturally occurring polyphenol, tannic acid, was incorporated in fully bioderived hybrid material that shows performance comparable to commercial Li-ion batteries and good stability. This thesis presents an important advancement in understanding of biowaste derived cathode materials for Li-ion batteries. Further research should be conducted to better understand behaviour of guaiacyl groups during Li-ion battery cycling. Lastly, challenges of incorporation of lignin, an industrial biowaste, have to be addressed and lignin should be incorporated as a cathode material in Li-ion batteries. N2 - Diese Dissertation untersucht, wie nachhaltige Kathoden (Kathodenmaterialien) für Lithium-Ionen-Batterien aus Holzabfällen hergestellt werden können. In den letzten Jahren hat die Menschheit erkannt, wie wenig nachhaltig unsere moderne Gesellschaft ist und große Mengen an Energie verbraucht, welche zum größten Teil aus fossilen Brennstoffen gewonnen werden. Daher versucht man jetzt die Energie aus hauptsächlich erneuerbaren Quellen wie Sonne und Wind zu gewinnen. Allerdings kann elektrische Energie nicht einfach wie Öl in einen Kanister gegossen werden, sondern muss in wieder aufladbaren Batterien gespeichert werden. In den letzten Jahren wurden Lithium-Ionen-Batterien entwickelt, die leistungsstark und allgegenwärtig sind, da sie zum Beispiel in Handys und sogar Autos Verwendung finden. Lithium-Ionen-Batterien verwenden jedoch Trägermaterialien aus giftigen Schwermetallen, die abgebaut werden müssen, was sich negativ auf die Umwelt auswirkt. In diesem Zusammenhang ist insbesondere das Schwermetall Kobalt zu erwähnen, welches in den meisten modernen Kathoden verwendet wird. Nach dem Bekanntwerden von Sklaverei und Kinderarbeit beim Kobaltabbau im Kongo, folgten große Kontroversen, da Kobalt praktisch in jedem Gerät führender Unternehmen wie zum Beispiel Apple und Microsoft zu finden ist. Idealerweise müssen wir von nicht erneuerbaren Schwermetallen zu erneuerbaren organischen Molekülen wechseln. Daher verwende ich in meiner Forschung Vanillin, ein Molekül, das hinsichtlich der Elektronenspeicherung ähnliche Eigenschaften wie Schwermetalle aufweist, jedoch viele Vorteile bietet. Erstens erkennt man Vanillin am spezifischen Geruch, da es einer der Hauptbestandteile von Vanille und daher ein natürlich vorkommendes Molekül ist. Zweitens kann es aus Holzabfällen oder aus Abfällen vieler Industrien hergestellt werden, die Holz als Rohstoff verwenden, wie beispielsweise der Papierindustrie. Durch milde chemische Reaktionen in Lösemitteln wie Wasser, Essig und Alkohol haben wir Vanillin zu einem Material modifiziert, welches hervorragende Eigenschaften zur Verwendung in Lithium-Ionen-Batterien hat und die bisher verwendeten Schwermetelle ersetzen kann. Diese Batterien wären somit erneuerbar und können uns der nachhaltigen Welt einen Schritt näher bringen. Darüber hinaus wurde Tanninsäure, ein natürlich vorkommendes Polymer in Holzrinde, verwendet, um vollständig aus Bioabfällen bestehende Batterien herzustellen. KW - biomass KW - electrochemistry KW - energy conversion KW - polymers KW - redox chemistry KW - Biomasse KW - Elektrochemie KW - Energieumwandlung KW - Polymere KW - Redoxchemie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483689 ER -