TY - JOUR A1 - Henault-Brunet, V. A1 - Oskinova, Lida A1 - Guerrero, Martín A. A1 - Sun, W. A1 - Chu, Y.-H. A1 - Evans, C. J. A1 - Gallagher, J. S. A1 - Gruendl, R. A. A1 - Reyes-Iturbide, J. T1 - Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the wing of the small magellanic cloud JF - Monthly notices of the Royal Astronomical Society N2 - We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low-density surroundings of NGC602. We detect a shell nebula around 2dFS 3831 in H alpha and [OIII] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion that created this new X-ray pulsar, its kinematic age of (2-4) x 10(4) yr provides a constraint on the age of the pulsar. KW - stars: emission-line, Be KW - ISM: supernova remnants KW - Magellanic Clouds KW - X-rays: binaries Y1 - 2012 U6 - https://doi.org/10.1111/j.1745-3933.2011.01183.x SN - 0035-8711 VL - 420 IS - 1 SP - L13 EP - L17 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Gvaramadze, V. V. A1 - Kniazev, A. Y. A1 - Miroshnichenko, A. S. A1 - Berdnikov, Leonid N. A1 - Langer, N. A1 - Stringfellow, G. S. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Grebel, E. K. A1 - Buckley, D. A1 - Crause, L. A1 - Crawford, S. A1 - Gulbis, A. A1 - Hettlage, C. A1 - Hooper, E. A1 - Husser, T. -O. A1 - Kotze, P. A1 - Loaring, N. A1 - Nordsieck, K. H. A1 - O'Donoghue, D. A1 - Pickering, T. A1 - Potter, S. A1 - Colmenero, E. Romero A1 - Vaisanen, P. A1 - Williams, T. A1 - Wolf, M. A1 - Reichart, D. E. A1 - Ivarsen, K. M. A1 - Haislip, J. B. A1 - Nysewander, M. C. A1 - LaCluyze, A. P. T1 - Discovery of two new Galactic candidate luminous blue variables with Wide-field Infrared Survey Explorer JF - Monthly notices of the Royal Astronomical Society N2 - We report the discovery of two new Galactic candidate luminous blue variable (LBV) stars via detection of circular shells (typical of confirmed and candidate LBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 mu m in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered candidate LBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R and I bands by 0.68 +/- 0.10 and 0.61 +/- 0.04 mag, respectively, during the last 1318 years, while the second one (known as Hen 3-1383) varies its B, V, R, I and Ks brightnesses by similar or equal to 0.50.9 mag on time-scales from 10 d to decades. We also found significant changes in the spectrum of Hen 3-1383 on a time-scale of similar or equal to 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered candidate LBVs might be directly related to their possible runaway status. KW - line: identification KW - circumstellar matter KW - stars: emission-line, Be KW - stars: evolution KW - stars: individual: Hen 3-1383 KW - stars: massive Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2966.2012.20556.x SN - 0035-8711 VL - 421 IS - 4 SP - 3325 EP - 3337 PB - Oxford Univ. Press CY - Oxford ER -