TY - JOUR A1 - Doerr, Benjamin A1 - Kötzing, Timo T1 - Lower bounds from fitness levels made easy JF - Algorithmica N2 - One of the first and easy to use techniques for proving run time bounds for evolutionary algorithms is the so-called method of fitness levels by Wegener. It uses a partition of the search space into a sequence of levels which are traversed by the algorithm in increasing order, possibly skipping levels. An easy, but often strong upper bound for the run time can then be derived by adding the reciprocals of the probabilities to leave the levels (or upper bounds for these). Unfortunately, a similarly effective method for proving lower bounds has not yet been established. The strongest such method, proposed by Sudholt (2013), requires a careful choice of the viscosity parameters gamma(i), j, 0 <= i < j <= n. In this paper we present two new variants of the method, one for upper and one for lower bounds. Besides the level leaving probabilities, they only rely on the probabilities that levels are visited at all. We show that these can be computed or estimated without greater difficulties and apply our method to reprove the following known results in an easy and natural way. (i) The precise run time of the (1+1) EA on LEADINGONES. (ii) A lower bound for the run time of the (1+1) EA on ONEMAX, tight apart from an O(n) term. (iii) A lower bound for the run time of the (1+1) EA on long k-paths (which differs slightly from the previous result due to a small error in the latter). We also prove a tighter lower bound for the run time of the (1+1) EA on jump functions by showing that, regardless of the jump size, only with probability O(2(-n)) the algorithm can avoid to jump over the valley of low fitness. KW - First hitting time KW - Fitness level method KW - Evolutionary computation Y1 - 2022 U6 - https://doi.org/10.1007/s00453-022-00952-w SN - 0178-4617 SN - 1432-0541 PB - Springer CY - New York ER -