TY - GEN A1 - Dellepiane, Sergio A1 - Vaid, Akhil A1 - Jaladanki, Suraj K. A1 - Coca, Steven A1 - Fayad, Zahi A. A1 - Charney, Alexander W. A1 - Böttinger, Erwin A1 - He, John Cijiang A1 - Glicksberg, Benjamin S. A1 - Chan, Lili A1 - Nadkarni, Girish T1 - Acute kidney injury in patients hospitalized with COVID-19 in New York City BT - Temporal Trends From March 2020 to April 2021 T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 21 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585415 SN - 2590-0595 IS - 5 ER - TY - JOUR A1 - Dellepiane, Sergio A1 - Vaid, Akhil A1 - Jaladanki, Suraj K. A1 - Coca, Steven A1 - Fayad, Zahi A. A1 - Charney, Alexander W. A1 - Böttinger, Erwin A1 - He, John Cijiang A1 - Glicksberg, Benjamin S. A1 - Chan, Lili A1 - Nadkarni, Girish T1 - Acute kidney injury in patients hospitalized with COVID-19 in New York City BT - Temporal Trends From March 2020 to April 2021 JF - Kidney medicine Y1 - 2021 U6 - https://doi.org/10.1016/j.xkme.2021.06.008 SN - 2590-0595 VL - 3 IS - 5 SP - 877 EP - 879 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chan, Lili A1 - Chaudhary, Kumardeep A1 - Saha, Aparna A1 - Chauhan, Kinsuk A1 - Vaid, Akhil A1 - Zhao, Shan A1 - Paranjpe, Ishan A1 - Somani, Sulaiman A1 - Richter, Felix A1 - Miotto, Riccardo A1 - Lala, Anuradha A1 - Kia, Arash A1 - Timsina, Prem A1 - Li, Li A1 - Freeman, Robert A1 - Chen, Rong A1 - Narula, Jagat A1 - Just, Allan C. A1 - Horowitz, Carol A1 - Fayad, Zahi A1 - Cordon-Cardo, Carlos A1 - Schadt, Eric A1 - Levin, Matthew A. A1 - Reich, David L. A1 - Fuster, Valentin A1 - Murphy, Barbara A1 - He, John C. A1 - Charney, Alexander W. A1 - Böttinger, Erwin A1 - Glicksberg, Benjamin A1 - Coca, Steven G. A1 - Nadkarni, Girish N. T1 - AKI in hospitalized patients with COVID-19 JF - Journal of the American Society of Nephrology : JASN N2 - Background: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associatedwith worse outcomes. However, AKI among hospitalized patients with COVID19 in the United States is not well described. Methods: This retrospective, observational study involved a review of data from electronic health records of patients aged >= 18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. Results: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patientswith AKI required dialysis. The proportionswith stages 1, 2, or 3 AKIwere 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. Conclusions: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge. KW - acute renal failure KW - clinical nephrology KW - dialysis KW - COVID-19 Y1 - 2021 U6 - https://doi.org/10.1681/ASN.2020050615 SN - 1046-6673 SN - 1533-3450 VL - 32 IS - 1 SP - 151 EP - 160 PB - American Society of Nephrology CY - Washington ER - TY - JOUR A1 - Sigel, Keith Magnus A1 - Swartz, Talia H. A1 - Golden, Eddye A1 - Paranjpe, Ishan A1 - Somani, Sulaiman A1 - Richter, Felix A1 - De Freitas, Jessica K. A1 - Miotto, Riccardo A1 - Zhao, Shan A1 - Polak, Paz A1 - Mutetwa, Tinaye A1 - Factor, Stephanie A1 - Mehandru, Saurabh A1 - Mullen, Michael A1 - Cossarini, Francesca A1 - Böttinger, Erwin A1 - Fayad, Zahi A1 - Merad, Miriam A1 - Gnjatic, Sacha A1 - Aberg, Judith A1 - Charney, Alexander A1 - Nadkarni, Girish A1 - Glicksberg, Benjamin S. T1 - Coronavirus 2019 and people living with human immunodeficiency virus BT - outcomes for hospitalized patients in New York City JF - Clinical infectious diseases : electronic edition N2 - Background: There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison group. Methods: We identified 88 PLWH hospitalized with laboratory-confirmed COVID-19 in our hospital system in New York City between 12 March and 23 April 2020. We collected data on baseline clinical characteristics, laboratory values, HIV status, treatment, and outcomes from this group and matched comparators (1 PLWH to up to 5 patients by age, sex, race/ethnicity, and calendar week of infection). We compared clinical characteristics and outcomes (death, mechanical ventilation, hospital discharge) for these groups, as well as cumulative incidence of death by HIV status. Results: Patients did not differ significantly by HIV status by age, sex, or race/ethnicity due to the matching algorithm. PLWH hospitalized with COVID-19 had high proportions of HIV virologic control on antiretroviral therapy. PLWH had greater proportions of smoking (P < .001) and comorbid illness than uninfected comparators. There was no difference in COVID-19 severity on admission by HIV status (P = .15). Poor outcomes for hospitalized PLWH were frequent but similar to proportions in comparators; 18% required mechanical ventilation and 21% died during follow-up (compared with 23% and 20%, respectively). There was similar cumulative incidence of death over time by HIV status (P = .94). Conclusions: We found no differences in adverse outcomes associated with HIV infection for hospitalized COVID-19 patients compared with a demographically similar patient group. KW - human immunodeficiency virus KW - coronavirus 2019 KW - severe acute respiratory KW - syndrome coronavirus 2 Y1 - 2020 U6 - https://doi.org/10.1093/cid/ciaa880 SN - 1058-4838 SN - 1537-6591 VL - 71 IS - 11 SP - 2933 EP - 2938 PB - Oxford Univ. Press CY - Cary, NC ER - TY - JOUR A1 - Lewkowicz, Daniel A1 - Wohlbrandt, Attila M. A1 - Böttinger, Erwin T1 - Digital therapeutic care apps with decision-support interventions for people with low back pain in Germany BT - Cost-effectiveness analysis JF - JMIR mhealth and uhealth N2 - Background: Digital therapeutic care apps provide a new effective and scalable approach for people with nonspecific low back pain (LBP). Digital therapeutic care apps are also driven by personalized decision-support interventions that support the user in self-managing LBP, and may induce prolonged behavior change to reduce the frequency and intensity of pain episodes. However, these therapeutic apps are associated with high attrition rates, and the initial prescription cost is higher than that of face-to-face physiotherapy. In Germany, digital therapeutic care apps are now being reimbursed by statutory health insurance; however, price targets and cost-driving factors for the formation of the reimbursement rate remain unexplored. Objective: The aim of this study was to evaluate the cost-effectiveness of a digital therapeutic care app compared to treatment as usual (TAU) in Germany. We further aimed to explore under which circumstances the reimbursement rate could be modified to consider value-based pricing. Methods: We developed a state-transition Markov model based on a best-practice analysis of prior LBP-related decision-analytic models, and evaluated the cost utility of a digital therapeutic care app compared to TAU in Germany. Based on a 3-year time horizon, we simulated the incremental cost and quality-adjusted life years (QALYs) for people with nonacute LBP from the societal perspective. In the deterministic sensitivity and scenario analyses, we focused on diverging attrition rates and app cost to assess our model's robustness and conditions for changing the reimbursement rate. All costs are reported in Euro (euro1=US $1.12). Results: Our base case results indicated that the digital therapeutic care strategy led to an incremental cost of euro121.59, but also generated 0.0221 additional QALYs compared to the TAU strategy, with an estimated incremental cost-effectiveness ratio (ICER) of euro5486 per QALY. The sensitivity analysis revealed that the reimbursement rate and the capability of digital therapeutic care to prevent reoccurring LBP episodes have a significant impact on the ICER. At the same time, the other parameters remained unaffected and thus supported the robustness of our model. In the scenario analysis, the different model time horizons and attrition rates strongly influenced the economic outcome. Reducing the cost of the app to euro99 per 3 months or decreasing the app's attrition rate resulted in digital therapeutic care being significantly less costly with more generated QALYs, and is thus considered to be the dominant strategy over TAU. Conclusions: The current reimbursement rate for a digital therapeutic care app in the statutory health insurance can be considered a cost-effective measure compared to TAU. The app's attrition rate and effect on the patient's prolonged behavior change essentially influence the settlement of an appropriate reimbursement rate. Future value-based pricing targets should focus on additional outcome parameters besides pain intensity and functional disability by including attrition rates and the app's long-term effect on quality of life. KW - cost-utility analysis KW - low back pain KW - back pain KW - cost-effectiveness KW - Markov model KW - digital therapy KW - digital health app KW - mHealth KW - orthopedic; KW - eHealth KW - mobile health KW - digital health KW - pain management KW - health apps Y1 - 2022 U6 - https://doi.org/10.2196/35042 SN - 2291-5222 VL - 10 IS - 2 PB - JMIR Publications CY - Toronto ER - TY - JOUR A1 - Datta, Suparno A1 - Sachs, Jan Philipp A1 - Freitas da Cruz, Harry A1 - Martensen, Tom A1 - Bode, Philipp A1 - Morassi Sasso, Ariane A1 - Glicksberg, Benjamin S. A1 - Böttinger, Erwin T1 - FIBER BT - enabling flexible retrieval of electronic health records data for clinical predictive modeling JF - JAMIA open N2 - Objectives: The development of clinical predictive models hinges upon the availability of comprehensive clinical data. Tapping into such resources requires considerable effort from clinicians, data scientists, and engineers. Specifically, these efforts are focused on data extraction and preprocessing steps required prior to modeling, including complex database queries. A handful of software libraries exist that can reduce this complexity by building upon data standards. However, a gap remains concerning electronic health records (EHRs) stored in star schema clinical data warehouses, an approach often adopted in practice. In this article, we introduce the FlexIBle EHR Retrieval (FIBER) tool: a Python library built on top of a star schema (i2b2) clinical data warehouse that enables flexible generation of modeling-ready cohorts as data frames. Materials and Methods: FIBER was developed on top of a large-scale star schema EHR database which contains data from 8 million patients and over 120 million encounters. To illustrate FIBER's capabilities, we present its application by building a heart surgery patient cohort with subsequent prediction of acute kidney injury (AKI) with various machine learning models. Results: Using FIBER, we were able to build the heart surgery cohort (n = 12 061), identify the patients that developed AKI (n = 1005), and automatically extract relevant features (n = 774). Finally, we trained machine learning models that achieved area under the curve values of up to 0.77 for this exemplary use case. Conclusion: FIBER is an open-source Python library developed for extracting information from star schema clinical data warehouses and reduces time-to-modeling, helping to streamline the clinical modeling process. KW - databases KW - factual KW - electronic health records KW - information storage and KW - retrieval KW - workflow KW - software/instrumentation Y1 - 2021 U6 - https://doi.org/10.1093/jamiaopen/ooab048 SN - 2574-2531 VL - 4 IS - 3 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Cope, Justin L. A1 - Baukmann, Hannes A. A1 - Klinger, Jörn E. A1 - Ravarani, Charles N. J. A1 - Böttinger, Erwin A1 - Konigorski, Stefan A1 - Schmidt, Marco F. T1 - Interaction-based feature selection algorithm outperforms polygenic risk score in predicting Parkinson’s Disease status JF - Frontiers in genetics N2 - Polygenic risk scores (PRS) aggregating results from genome-wide association studies are the state of the art in the prediction of susceptibility to complex traits or diseases, yet their predictive performance is limited for various reasons, not least of which is their failure to incorporate the effects of gene-gene interactions. Novel machine learning algorithms that use large amounts of data promise to find gene-gene interactions in order to build models with better predictive performance than PRS. Here, we present a data preprocessing step by using data-mining of contextual information to reduce the number of features, enabling machine learning algorithms to identify gene-gene interactions. We applied our approach to the Parkinson's Progression Markers Initiative (PPMI) dataset, an observational clinical study of 471 genotyped subjects (368 cases and 152 controls). With an AUC of 0.85 (95% CI = [0.72; 0.96]), the interaction-based prediction model outperforms the PRS (AUC of 0.58 (95% CI = [0.42; 0.81])). Furthermore, feature importance analysis of the model provided insights into the mechanism of Parkinson's disease. For instance, the model revealed an interaction of previously described drug target candidate genes TMEM175 and GAPDHP25. These results demonstrate that interaction-based machine learning models can improve genetic prediction models and might provide an answer to the missing heritability problem. KW - epistasis KW - machine learning KW - feature selection KW - parkinson's disease KW - PPMI (parkinson's progression markers initiative) Y1 - 2021 U6 - https://doi.org/10.3389/fgene.2021.744557 SN - 1664-8021 VL - 12 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Vaid, Akhil A1 - Somani, Sulaiman A1 - Russak, Adam J. A1 - De Freitas, Jessica K. A1 - Chaudhry, Fayzan F. A1 - Paranjpe, Ishan A1 - Johnson, Kipp W. A1 - Lee, Samuel J. A1 - Miotto, Riccardo A1 - Richter, Felix A1 - Zhao, Shan A1 - Beckmann, Noam D. A1 - Naik, Nidhi A1 - Kia, Arash A1 - Timsina, Prem A1 - Lala, Anuradha A1 - Paranjpe, Manish A1 - Golden, Eddye A1 - Danieletto, Matteo A1 - Singh, Manbir A1 - Meyer, Dara A1 - O'Reilly, Paul F. A1 - Huckins, Laura A1 - Kovatch, Patricia A1 - Finkelstein, Joseph A1 - Freeman, Robert M. A1 - Argulian, Edgar A1 - Kasarskis, Andrew A1 - Percha, Bethany A1 - Aberg, Judith A. A1 - Bagiella, Emilia A1 - Horowitz, Carol R. A1 - Murphy, Barbara A1 - Nestler, Eric J. A1 - Schadt, Eric E. A1 - Cho, Judy H. A1 - Cordon-Cardo, Carlos A1 - Fuster, Valentin A1 - Charney, Dennis S. A1 - Reich, David L. A1 - Böttinger, Erwin A1 - Levin, Matthew A. A1 - Narula, Jagat A1 - Fayad, Zahi A. A1 - Just, Allan C. A1 - Charney, Alexander W. A1 - Nadkarni, Girish N. A1 - Glicksberg, Benjamin S. T1 - Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: model development and validation JF - Journal of medical internet research : international scientific journal for medical research, information and communication on the internet ; JMIR N2 - Background: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. Objective: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. Methods: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. Results: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. Conclusions: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes. KW - machine learning KW - COVID-19 KW - electronic health record KW - TRIPOD KW - clinical KW - informatics KW - prediction KW - mortality KW - EHR KW - cohort KW - hospital KW - performance Y1 - 2020 U6 - https://doi.org/10.2196/24018 SN - 1439-4456 SN - 1438-8871 VL - 22 IS - 11 PB - Healthcare World CY - Richmond, Va. ER - TY - JOUR A1 - Chan, Lili A1 - Jaladanki, Suraj K. A1 - Somani, Sulaiman A1 - Paranjpe, Ishan A1 - Kumar, Arvind A1 - Zhao, Shan A1 - Kaufman, Lewis A1 - Leisman, Staci A1 - Sharma, Shuchita A1 - He, John Cijiang A1 - Murphy, Barbara A1 - Fayad, Zahi A. A1 - Levin, Matthew A. A1 - Böttinger, Erwin A1 - Charney, Alexander W. A1 - Glicksberg, Benjamin A1 - Coca, Steven G. A1 - Nadkarni, Girish N. T1 - Outcomes of patients on maintenance dialysis hospitalized with COVID-19 JF - Clinical journal of the American Society of Nephrology : CJASN KW - chronic dialysis KW - COVID-19 KW - end-stage kidney disease Y1 - 2021 U6 - https://doi.org/10.2215/CJN.12360720 SN - 1555-9041 SN - 1555-905X VL - 16 IS - 3 SP - 452 EP - 455 PB - American Society of Nephrology CY - Washington ER - TY - JOUR A1 - De Freitas, Jessica K. A1 - Johnson, Kipp W. A1 - Golden, Eddye A1 - Nadkarni, Girish N. A1 - Dudley, Joel T. A1 - Böttinger, Erwin A1 - Glicksberg, Benjamin S. A1 - Miotto, Riccardo T1 - Phe2vec BT - Automated disease phenotyping based on unsupervised embeddings from electronic health records JF - Patterns N2 - Robust phenotyping of patients from electronic health records (EHRs) at scale is a challenge in clinical informatics. Here, we introduce Phe2vec, an automated framework for disease phenotyping from EHRs based on unsupervised learning and assess its effectiveness against standard rule-based algorithms from Phenotype KnowledgeBase (PheKB). Phe2vec is based on pre-computing embeddings of medical concepts and patients' clinical history. Disease phenotypes are then derived from a seed concept and its neighbors in the embedding space. Patients are linked to a disease if their embedded representation is close to the disease phenotype. Comparing Phe2vec and PheKB cohorts head-to-head using chart review, Phe2vec performed on par or better in nine out of ten diseases. Differently from other approaches, it can scale to any condition and was validated against widely adopted expert-based standards. Phe2vec aims to optimize clinical informatics research by augmenting current frameworks to characterize patients by condition and derive reliable disease cohorts. Y1 - 2021 U6 - https://doi.org/10.1016/j.patter.2021.100337 SN - 2666-3899 VL - 2 IS - 9 PB - Elsevier CY - Amsterdam ER -