TY - JOUR A1 - Stephan, Mareike Sophia A1 - Bröker, Nina K. A1 - Saragliadis, Athanasios A1 - Roos, Norbert A1 - Linke, Dirk A1 - Barbirz, Stefanie T1 - In vitro analysis of O-antigen-specific bacteriophage P22 inactivation by Salmonella outer membrane vesicles JF - Frontiers in microbiology N2 - Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions ofSalmonella(S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host.In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system. KW - bacteriophage KW - bacterial outer membrane vesicles KW - O-antigen KW - bacterial KW - membrane fractionation KW - Salmonella KW - lipopolysaccharide Y1 - 2020 U6 - https://doi.org/10.3389/fmicb.2020.510638 SN - 1664-302X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Schmidt, Andreas A1 - Rabsch, Wolfgang A1 - Bröker, Nina Kristin A1 - Barbirz, Stefanie T1 - Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens JF - BMC microbiology N2 - Background: Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results: We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions: Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production. KW - Salmonella Typhimurium KW - O-antigen KW - Tailspike protein KW - Bacteriophage KW - Phase variation KW - O-serotyping KW - Flow cytometry Y1 - 2016 U6 - https://doi.org/10.1186/s12866-016-0826-0 SN - 1471-2180 VL - 16 SP - 2214 EP - 2226 PB - BioMed Central CY - London ER - TY - JOUR A1 - Schmidt, Andreas A1 - Rabsch, Wolfgang A1 - Broeker, Nina K. A1 - Barbirz, Stefanie T1 - Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens JF - BMC microbiology N2 - Background Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production. KW - Salmonella Typhimurium KW - O-antigen KW - Tailspike protein KW - Bacteriophage KW - Phase variation KW - O-serotyping KW - Flow cytometry Y1 - 2016 U6 - https://doi.org/10.1186/s12866-016-0826-0 SN - 1471-2180 VL - 16 PB - BioMed Central CY - London ER - TY - GEN A1 - Schmidt, Andreas A1 - Rabsch, Wolfgang A1 - Broeker, Nina K. A1 - Barbirz, Stefanie T1 - Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens N2 - Background Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 313 KW - Bacteriophage KW - Flow cytometry KW - O-antigen KW - O-serotyping KW - Phase variation KW - Salmonella Typhimurium KW - Tailspike protein Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103769 ER - TY - THES A1 - Schmidt, Andreas T1 - Charakterisierung der Lipopolysaccharid-Bindungseigenschaften von Adhäsionsproteinen aus Salmonella-Bakteriophagen T1 - Characterization of lipopolysaccharide-binding properties of adhesion proteins from Salmonella-bacteriophages N2 - Die Interaktionen von komplexen Kohlenhydraten und Proteinen sind ubiquitär. Sie spielen wichtige Rollen in vielen physiologischen Prozessen wie Zelladhäsion, Signaltransduktion sowie bei viralen Infektionen. Die molekularen Grundlagen der Interaktion sind noch nicht komplett verstanden. Ein Modellsystem für Kohlenhydrat-Protein-Interaktionen besteht aus Adhäsionsproteinen (Tailspikes) von Bakteriophagen, die komplexe Kohlenhydrate auf bakteriellen Oberflächen (O-Antigen) erkennen. Das Tailspike-Protein (TSP), das in dieser Arbeit betrachtet wurde, stammt aus dem Bakteriophagen 9NA (9NATSP). 9NATSP weist eine hohe strukturelle Homologie zum gut charakterisierten TSP des Phagen P22 (P22TSP) auf, bei einer niedriger sequenzieller Ähnlichkeit. Die Substratspezifitäten beider Tailspikes sind ähnlich mit Ausnahme der Toleranz gegenüber den glucosylierten Formen des O-Antigens. Die Struktur der beiden Tailspikes ist bekannt, sodass sie ein geeignetes System für vergleichende Bindungsstudien darstellen, um die strukturellen Grundlagen für die Unterschiede der Spezifität zu untersuchen. Im Rahmen dieser Arbeit wurde der ELISA-like tailspike adsorption assay (ELITA) etabliert, um Binderpaare aus TSPs und O-Antigen zu identifizieren. Dabei wurden 9NATSP und P22TSP als Sonden eingesetzt, deren Bindung an die intakten, an die Mikrotiterplatte adsorbierten Bakterien getestet wurde. Beim Test einer Sammlung aus 44 Salmonella-Stämmen wurden Stämme identifiziert, die bindendes O-Antigen exprimieren. Gleichzeitig wurden Unterschiede in der Bindung der beiden TSPs an Salmonella-Stämme mit gleichem O-Serotyp beobachtet. Die Ergebnisse der ELITA-Messung wurden qualitativ durch eine FACS-basierte Bindungsmessung bestätigt. Zusätzlich ermöglichte die FACS-Messung bei Stämmen, die teilweise modifizierte O-Antigene herstellen, den Anteil an Zellen mit und ohne Modifikation zu erfassen. Die Oberflächenplasmonresonanz (SPR)-basierten Interaktionsmessungen wurden eingesetzt, um Bindungsaffinitäten für eine TSP-O-Antigen Kombination zu quantifizieren. Dafür wurden zwei Methoden getestet, um die Oligosaccharide auf einem SPR-Chip zu immobilisieren. Zum einen wurden die enzymatisch hergestellten O-Antigenfragmente mit einem bifunktionalen Oxaminadapter derivatisiert, der eine primäre Aminogruppe für die Immobilisierung bereitstellt. Ein Versuch, diese Oligosaccharidfragmente zu immobilisieren, war jedoch nicht erfolgreich. Dagegen wurde das nicht derivatisierte Polysaccharid, bestehend aus repetitivem O-Antigen und einem konservierten Kernsaccharid, erfolgreich auf einem SPR-Chip immobilisiert. Die Immobilisierung wurde durch Interaktionsmessungen mit P22TSP bestätigt. Durch die Immobilisierung des Polysaccharids sind somit quantitative SPR-Bindungsmessungen mit einem polydispersen Interaktionspartner möglich. Eine Auswahl von Salmonella-Stämmen mit einer ausgeprägt unterschiedlichen Bindung von 9NATSP und P22TSP im ELITA-Testsystem wurde hinsichtlich der Zusammensetzung des O-Antigens mittels HPLC, Kapillargelelektrophorese und MALDI-MS analysiert. Dabei wurden nicht-stöchiometrische Modifikationen der O-Antigene wie Acetylierung und Glucosylierung detektiert. Das Ausmaß der Glucosylierung korrelierte negativ mit der Effizienz der Bindung und des Verdaus durch die beiden TSPs, wobei der negative Effekt bei 9NATSP weniger stark ausgeprägt war als bei P22TSP. Dies stimmt mit den Literaturdaten zu Infektivitätsstudien mit 9NA und P22 überein, die mit Stämmen mit vergleichbaren O-Antigenvarianten durchgeführt wurden. Die Korrelation zwischen der Glucosylierung und Bindungseffizienz konnte strukturell interpretiert werden. Auf Grundlage der O-Antigenanalysen sowie der Ergebnisse der ELITA- und FACS-Bindungstests wurden die Salmonella-Stämme Brancaster und Kalamu identifiziert, die annähernd quantitativ glucosyliertes O-Antigen exprimieren. Damit eignen sich diese Stämme für weiterführende Studien, um die Zusammenhänge zwischen der Spezifität und der Organisation der Bindestellen der beiden TSPs zu untersuchen. N2 - Interactions between complex carbohydrates and proteins are ubiquitous. They play a major role in plenty of physiological processes as cell adhesion, signal transduction, as well as viral infections. The molecular details of the interaction are not completely understood. A model system for protein-carbohydrate interactions consists of adhesion proteins (Tailspikes) of bacteriophages, which recognize complex carbohydrates on the bacterial surface (O-antigen). A Tailspike primary used in this work originates from the bacteriophage 9NA (9NATSP). 9NATSP shows a remarkable structural similarity to the extensively studied TSP of the bacteriophage P22 (P22TSP), showing a low sequential similarity. Since structures of both TSP's are known, they provide an appropriate system for comparative interaction studies. An ELISA-like Tailspike-adsorbtion assay (ELITA) was established in this work which allows identification of binding pairs consisting of TSP's and O-antigens. In this approach 9NATSP and P22TSP were used as probes. Their binding to intact bacteria adsorbed to a multi-well plate was tested. In a collection of 44 Salmonella-strains a set of strains was identified which express a binding O-antigen. Additionally different binding efficiencies were observed among the strains of the same O-serotype. Binding data of the ELITA were qualitatively resembled in a FACS-based binding test. Additionally FACS-measurements allowed estimation of the extent of non-stoichiometric modifications of the O-antigens in strains expressing modified O-antigen variants. The surface plasmone resonance (SPR) interaction-measurements were used to quantify affinities of TSP-O-antigen binding. For this, two carbohydrate immobilization strategies were tested. An O-antigen fragment, produced by enzymatic digestion, was derivatized by a bi-functional Oxamine-spacer. The spacer provides a primary amine-functionality for the immobilization. Despite the successful derivatization, sufficient amount of the O-antigen fragment could not be immobilized. Oppositely, the non-derivatized whole polysaccharide was successfully immobilized. The immobilization was confirmed by SPR-measurements with P22TSP. This approach allows quantitative measurements with polysaccharide as ligand, despite of its polydisperse characteristics. A set of Salmonella-strains with a distinctively different binding to 9NATSP and P22TSP in ELITA were characterized in terms of the content of their O-antigen by HPLC, capillary gel electrophoresis and MALDI-MS. Non-stoichiometric modifications of the O-antigens as acetylation and glucosylation were identified. The extent of glucosylation correlated negatively with the binding efficiencies to both TSP's, identifying 9NATSP as more susceptible to the glucosylation. That finding resembles with published data from early studies on the infectivity of bacteriophages 9NA and P22. Observed data could be interpreted in a structural context. The results of the O-antigen analysis as well as the results of ELITA and FACS-based interaction tests two Salmonella-strains, were identified, which produce almost completely glucosylated O-antigen: Salmonella Brancaster and Salmonella Kalamu. These strains are suitable for further studies to investigate the interdependence of the specificity and the structure of the binding sites of both TSP's. KW - Lipopolysaccharid KW - O-Antigen KW - nicht-stöchiometrische Modifikationen KW - Glycosylierung KW - Bakteriophagen KW - Adhäsionsproteine KW - Tailspike KW - Protein-Kohlenhydrat Interaktionen KW - lipopolysaccharide KW - O-antigen KW - non-stoichiometric modifications KW - glycosylation KW - bacteriophages KW - adhesion proteins KW - Tailspikes KW - protein-carbohydrate interactions Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-79529 ER - TY - GEN A1 - Kunstmann, Ruth Sonja A1 - Scheidt, Tom A1 - Buchwald, Saskia A1 - Helm, Alexandra A1 - Mulard, Laurence A. A1 - Fruth, Angelika A1 - Barbirz, Stefanie T1 - Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens T2 - Viruses N2 - Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 472 KW - Shigella flexneri KW - bacteriophage KW - tailspike proteins KW - O-antigen KW - serotyping KW - microtiter plate assay KW - fluorescence sensor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417831 ER - TY - JOUR A1 - Kunstmann, Ruth Sonja A1 - Scheidt, Tom A1 - Buchwald, Saskia A1 - Helm, Alexandra A1 - Mulard, Laurence A. A1 - Fruth, Angelika A1 - Barbirz, Stefanie T1 - Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens JF - Viruses N2 - Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system. KW - Shigella flexneri KW - bacteriophage KW - tailspike proteins KW - O-antigen KW - serotyping KW - microtiter plate assay KW - fluorescence sensor Y1 - 2018 U6 - https://doi.org/10.3390/v10080431 SN - 1999-4915 VL - 10 IS - 8 SP - 1 EP - 18 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER -