TY - JOUR A1 - Valente, Luis M. A1 - Phillimore, Albert B. A1 - Etienne, Rampal S. T1 - Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands JF - Ecology letters N2 - Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. KW - Community assembly KW - diversification KW - dynamic equilibrium KW - island biogeography KW - phylogeny Y1 - 2015 U6 - https://doi.org/10.1111/ele.12461 SN - 1461-0248 SN - 1461-023X VL - 18 SP - 844 EP - 852 PB - Wiley-Blackwell CY - Oxford ER - TY - GEN A1 - Valente, Luis M. A1 - Phillimore, Albert B. A1 - Etienne, Rampal S. T1 - Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands N2 - Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 230 KW - Community assembly KW - diversification KW - dynamic equilibrium KW - island biogeography KW - phylogeny Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93525 ER - TY - JOUR A1 - Valente, Luis M. A1 - Etienne, Rampal S. A1 - Phillimore, Albert B. T1 - The effects of island ontogeny on species diversity and phylogeny JF - Proceedings of the Royal Society of London : B, Biological sciences N2 - A major goal of island biogeography is to understand how island communities are assembled over time. However, we know little about the influence of variable area and ecological opportunity on island biotas over geological time-scales. Islands have limited life spans, and it has been posited that insular diversity patterns should rise and fall with an island's ontogeny. The potential of phylogenies to inform us of island ontogenetic stage remains unclear, as we lack a phylogenetic framework that focuses on islands rather than clades. Here, we present a parsimonious island-centric model that integrates phylogeny and ontogeny into island biogeography and can incorporate a negative feedback of diversity on species origination. This framework allows us to generate predictions about species richness and phylogenies on islands of different ages. We find that peak richness lags behind peak island area, and that endemic species age increases with island age on volcanic islands. When diversity negatively affects rates of immigration and cladogenesis, our model predicts speciation slowdowns on old islands. Importantly, we find that branching times of in situ radiations can be informative of an island's ontogenetic stage. This novel framework provides a quantitative means of uncovering processes responsible for island biogeography patterns using phylogenies. KW - island biogeography KW - volcanic ontogeny KW - phylogeny KW - radiation KW - endemicity Y1 - 2014 U6 - https://doi.org/10.1098/rspb.2013.3227 SN - 0962-8452 SN - 1471-2954 VL - 281 IS - 1784 PB - Royal Society CY - London ER - TY - THES A1 - Treplin, Simone T1 - Inference of phylogenetic relationships in passerine birds (Aves: Passeriformes) using new molecular markers T1 - Neue molekulare Marker für die Phylogenie der Sperlingsvögel (Aves: Passeriformes) N2 - The aim of this study was to provide deeper insights in passerine phylogenetic relationships using new molecular markers. The monophyly of the largest avian order Passeriformes (~59% of all living birds) and the division into its suborders suboscines and oscines are well established. Phylogenetic relationships within the group have been extremely puzzling, as most of the evolutionary lineages originated through rapid radiation. Numerous studies have hypothesised conflicting passerine phylogenies and have repeatedly stimulated further research with new markers. In the present study, I used three different approaches to contribute to the ongoing phylogenetic debate in Passeriformes. I investigated the recently introduced gene ZENK for its phylogenetic utility for passerine systematics in combination and comparison to three already established nuclear markers. My phylogenetic analyses of a comprehensive data set yielded highly resolved, consistent and strongly supported trees. I was able to show the high utility of ZENK for elucidating phylogenetic relationships within Passeriformes. For the second and third approach, I used chicken repeat 1 (CR1) retrotransposons as phylogenetic markers. I presented two specific CR1 insertions as apomorphic characters, whose presence/absence pattern significantly contributed to the resolution of a particular phylogenetic uncertainty, namely the position of the rockfowl species Picathartes spp. in the passerine tree. Based on my results, I suggest a closer relationship of these birds to crows, ravens, jays, and allies. For the third approach, I showed that CR1 sequences contain phylogenetic signal and investigated their applicability in more detail. In this context, I screened for CR1 elements in different passerine birds, used sequences of several loci to construct phylogenetic trees, and evaluated their reliability. I was able to corroborate existing hypotheses and provide strong evidence for some new hypotheses, e.g. I suggest a revision of the taxa Corvidae and Corvinae as vireos are closer related to crows, ravens, and allies. The subdivision of the Passerida into three superfamilies, Sylvioidea, Passeroidea, and Muscicapoidea was strongly supported. I found evidence for a split within Sylvioidea into two clades, one consisting of tits and the other comprising warblers, bulbuls, laughingthrushes, whitethroats, and allies. Whereas Passeridae appear to be paraphyletic, monophyly of weavers and estrild finches as a separate clade was strongly supported. The sister taxon relationships of dippers and the thrushes/flycatcher/chat assemblage was corroborated and I suggest a closer relationship of waxwings and kinglets to wrens, tree-creepers, and nuthatches. N2 - Das Ziel dieser Arbeit war es, mittels neuer molekularer Marker zusätzliche Informationen über die phylogenetischen Verwandtschaftsverhältnisse der Sperlingsvögel (Passeriformes) zu erhalten. Die Monophylie der Passeriformes, der größten Vogelgruppe (~59% aller lebenden Arten), sowie ihrer Unterteilung in Suboscines und Oscines sind gut belegt. Die phylogenetischen Verwandtschaftsverhältnisse innerhalb dieser Gruppen sind jedoch seit jeher sehr schwer zu entschlüsseln, da sich die meisten Linien durch eine schnelle Radiation entwickelten. Zahlreiche Studien haben verschiedene Hypothesen zur Phylogenie der Sperlingsvögel aufgestellt und damit die Suche nach neuen Markern initiiert. In meiner Untersuchung habe ich drei verschiedene Ansätze benutzt, um zur Klärung der Phylogenie beizutragen. Ich untersuchte das kürzlich als Marker eingeführte ZENK-Gen im Hinblick auf seinen Nutzen in der Systematik der Sperlingsvögel in Kombination und im Vergleich zu drei bereits etablierten nukleären Markern. Meine phylogenetischen Analysen eines umfassenden Datensatzes ergaben hoch aufgelöste, konsistente und stark unterstütze Stammbäume, so dass ich den hohen Nutzwert des ZENK-Gens für die Klärung phylogenetischer Verwandtschaftsverhältnisse der Passeriformes zeigen konnte. Für den zweiten und dritten Ansatz habe ich Chicken Repeat 1 (CR1) Retrotransposons als phylogenetische Marker benutzt. Anhand zweier spezifischer CR1 Insertionen als apomorphe Merkmale und deren Insertionsmuster in verschiedenen Sperlingsvögeln konnte ich die phylogenetische Position der afrikanischen Felshüpfer, Picathartes spp., klären. Aufgrund meiner Ergebnisse schließe ich auf eine engere Verwandtschaft der Felshüpfer zu den Rabenvögeln. Durch meinen dritten Ansatz konnte ich nachweisen, dass CR1-Sequenzen phylogenetische Informationen enthalten, und untersuchte detailliert deren Anwendung als Marker. Dafür habe ich in verschiedenen Sperlingsvögeln nach CR1 Elementen gesucht und mit einigen dieser Sequenzen Stammbäume berechnet, um die Verlässlichkeit der Marker zu überprüfen. Durch meine Untersuchungen konnte ich existierende Hypothesen stützen und zusätzlich starke Hinweise auf neue Hypothesen finden. Beispielsweise schlage ich eine Revision der Taxa Corvidae und Corvinae vor, da Vireos eng mit den Rabenvögeln verwandt sind. Die Unterteilung der Passerida in die drei Unterfamilien Sylvioidea, Passeroidea und Muscicapoidea konnte deutlich bestätigt werden. Ich habe Hinweise auf eine Trennung der Sylvioidea in zwei taxonomische Gruppen erhalten, einer bestehend aus Meisen und Verwandten und der andere aus Grasmücken, Bülbüls, Häherlingen, Brillenvögeln und Verwandten. Während die Passeridae paraphyletisch sind, wurde die Monophylie der Weber und Astrilden als ein eigenes Taxon unterstützt. Das Schwestergruppenverhältnis zwischen Wasseramseln und dem Drossel/Fliegenschnäpper/Schmätzer-Taxon wurde ebenfalls bestätigt. Außerdem habe ich Hinweise auf eine nähere Verwandtschaft zwischen Seidenschwänzen und Goldhähnchen zu Zaunkönigen, Baumläufern und Kleibern gefunden. KW - Passeriformes KW - Phylogenie KW - ZENK KW - Retrotransposon KW - Chicken Repeat KW - Passeriformes KW - phylogeny KW - ZENK KW - retrotransposon KW - chicken repeat 1 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-11230 ER - TY - GEN A1 - Sammler, Svenja A1 - Bleidorn, Christoph A1 - Tiedemann, Ralph T1 - Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination N2 - Background: Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results: Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i. e., in every generation. Conclusions: The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 367 KW - d-loop region KW - concerted evolution KW - gene order KW - birds KW - phylogeny KW - heteroplasmy KW - organization KW - duplication KW - vertebrates KW - alignment Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400889 ER - TY - GEN A1 - Rainford, James L. A1 - Hofreiter, Michael A1 - Mayhew, Peter J. T1 - Phylogenetic analyses suggest that diversification and body size evolution are independent in insects T2 - BMC evolutionary biology N2 - Background: Skewed body size distributions and the high relative richness of small-bodied taxa are a fundamental property of a wide range of animal clades. The evolutionary processes responsible for generating these distributions are well described in vertebrate model systems but have yet to be explored in detail for other major terrestrial clades. In this study, we explore the macro-evolutionary patterns of body size variation across families of Hexapoda (insects and their close relatives), using recent advances in phylogenetic understanding, with an aim to investigate the link between size and diversity within this ancient and highly diverse lineage. Results: The maximum, minimum and mean-log body lengths of hexapod families are all approximately log-normally distributed, consistent with previous studies at lower taxonomic levels, and contrasting with skewed distributions typical of vertebrate groups. After taking phylogeny and within-tip variation into account, we find no evidence for a negative relationship between diversification rate and body size, suggesting decoupling of the forces controlling these two traits. Likelihood-based modeling of the log-mean body size identifies distinct processes operating within Holometabola and Diptera compared with other hexapod groups, consistent with accelerating rates of size evolution within these clades, while as a whole, hexapod body size evolution is found to be dominated by neutral processes including significant phylogenetic conservatism. Conclusions: Based on our findings we suggest that the use of models derived from well-studied but atypical clades, such as vertebrates may lead to misleading conclusions when applied to other major terrestrial lineages. Our results indicate that within hexapods, and within the limits of current systematic and phylogenetic knowledge, insect diversification is generally unfettered by size-biased macro-evolutionary processes, and that these processes over large timescales tend to converge on apparently neutral evolutionary processes. We also identify limitations on available data within the clade and modeling approaches for the resolution of trees of higher taxa, the resolution of which may collectively enhance our understanding of this key component of terrestrial ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 441 KW - body size KW - diversification KW - hexapoda KW - insects KW - phylogeny Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407328 ER - TY - JOUR A1 - Pyšek, Petr A1 - Pergl, Jan A1 - Essl, Franz A1 - Lenzner, Bernd A1 - Dawson, Wayne A1 - Kreft, Holger A1 - Weigelt, Patrick A1 - Winter, Marten A1 - Kartesz, John A1 - Nishino, Misako A1 - Antonova, Liubov A. A1 - Barcelona, Julie F. A1 - Cabezas, Francisco José A1 - Cárdenas López, Dairon A1 - Cárdenas-Toro, Juliana A1 - Castańo, Nicolás A1 - Chacón, Eduardo A1 - Chatelain, Cyrille A1 - Dullinger, Stefan A1 - Ebel, Aleksandr L. A1 - Figueiredo, Estrela A1 - Fuentes, Nicol A1 - Genovesi, Piero A1 - Groom, Quentin J. A1 - Henderson, Lesley A1 - Inderjit, A1 - Kupriyanov, Andrey A1 - Masciadri, Silvana A1 - Maurel, Noëlie A1 - Meerman, Jan A1 - Morozova, Olʹga V. A1 - Moser, Dietmar A1 - Nickrent, Daniel A1 - Nowak, Pauline M. A1 - Pagad, Shyama A1 - Patzelt, Annette A1 - Pelser, Pieter B. A1 - Seebens, Hanno A1 - Shu, Wen-sheng A1 - Thomas, Jacob A1 - Velayos, Mauricio A1 - Weber, Ewald A1 - Wieringa, Jan J. A1 - Baptiste, Maria P. A1 - Kleunen, Mark van T1 - Naturalized alien flora of the world T1 - Naturalizovaná nepůvodní flóra světa BT - species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion BT - druhová diverzita, taxonomické a fylogenetické složení, geografické zákonitosti a globální ohniska rostlinných invazí JF - Preslia : the journal of the Czech Botanical Society N2 - Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48% of the regions that cover 42% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4%) thanmainland regions (29.5%), and fewer annual herbs (18.7% compared to 22.3%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide. KW - alien species KW - distribution KW - Global Naturalized Alien Flora (GloNAF) database KW - invasive species KW - islands KW - life history KW - mainland KW - naturalized species KW - phylogeny KW - plant invasion KW - regional floras KW - species richness KW - taxonomy KW - zonobiome Y1 - 2017 U6 - https://doi.org/10.23855/preslia.2017.203 SN - 0032-7786 VL - 89 IS - 3 SP - 203 EP - 274 PB - Czech Botanical Soc. CY - Praha ER - TY - THES A1 - Lamanna, Francesco T1 - Adaptive radiation and speciation in African weakly-electric fish T1 - Adaptive Radiation und Artbildung von elektrischen Fischen Afrikas BT - a phylogenetic and transcriptomic perspective BT - eine phylogenetische und transkriptomische Perspektive N2 - The rise of evolutionary novelties is one of the major drivers of evolutionary diversification. African weakly-electric fishes (Teleostei, Mormyridae) have undergone an outstanding adaptive radiation, putatively owing to their ability to communicate through species-specific Electric Organ Discharges (EODs) produced by a novel, muscle-derived electric organ. Indeed, such EODs might have acted as effective pre-zygotic isolation mechanisms, hence favoring ecological speciation in this group of fishes. Despite the evolutionary importance of this organ, genetic investigations regarding its origin and function have remained limited. The ultimate aim of this study is to better understand the genetic basis of EOD production by exploring the transcriptomic profiles of the electric organ and of its ancestral counterpart, the skeletal muscle, in the genus Campylomormyrus. After having established a set of reference transcriptomes using “Next-Generation Sequencing” (NGS) technologies, I performed in silico analyses of differential expression, in order to identify sets of genes that might be responsible for the functional differences observed between these two kinds of tissues. The results of such analyses indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ; ii) the metabolic activity of the electric organ might be specialized towards the production and turnover of membrane structures; iii) several ion channels are highly expressed in the electric organ in order to increase excitability, and iv) several myogenic factors might be down-regulated by transcription repressors in the EO. A secondary task of this study is to improve the genus level phylogeny of Campylomormyrus by applying new methods of inference based on the multispecies coalescent model, in order to reduce the conflict among gene trees and to reconstruct a phylogenetic tree as closest as possible to the actual species-tree. By using 1 mitochondrial and 4 nuclear markers, I was able to resolve the phylogenetic relationships among most of the currently described Campylomormyrus species. Additionally, I applied several coalescent-based species delimitation methods, in order to test the hypothesis that putatively cryptic species, which are distinguishable only from their EOD, belong to independently evolving lineages. The results of this analysis were additionally validated by investigating patterns of diversification at 16 microsatellite loci. The results suggest the presence of a new, yet undescribed species of Campylomormyrus. N2 - Das übergreifende Ziel dieser Arbeit ist das bessere Verständnis der Bedeutung der schwachen Elektrizität für die adaptive radiation der Mormyriden Afrikas. Das gewählte Modell-Taxon, die Mormyriden-Gattung Campylomormyrus, zeigt eine große Vielfalt an elektrischen Entladungsformen. Diese Entladungsformen sind artspezifisch. Die genetische Basis dieses Merkmales ist allerdings noch unbekannt. In dieser Arbeit habe ich transkriptomische Untersuchungen vom elektrischen Organ und Skelettmuskel durchgeführt. Die Ergebnisse dieser Analysen zeigen, dass die phenotypischen Unterschiede zwischen dem elektrischen Organ und dem Skelettmusckel in den jeweiligen transkriptomen gespiegelt sind. Ich habe auch einen phylogenetischen Stammbaum für die Gattung Campylomormyrus hergestellt, durch die Anwendung von „Multispecies Coalescent Models“-basierten Methoden. Außerdem, durch die Anwendung von Mikrosatellitdaten, die als unabhängiger Beweis dienten, konnte ich zeigen, dass die identifizierten phylogenetischen Gruppen reproduktiv isolierte biologische Arten sind. Auf diese Weise konnte ich ein neuen, noch unbeschriebenen Art nachweisen. KW - evolution KW - transcriptomics KW - phylogeny KW - Evolution KW - Transkriptomik KW - Phylogenese Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-80097 ER - TY - JOUR A1 - Kupfer, Alexander A1 - Maxwell, Erin A1 - Reinhard, Sandy A1 - Kuehnel, Susanne T1 - The evolution of parental investment in caecilian amphibians: a comparative approach JF - Biological journal of the Linnean Society : a journal of evolution N2 - Parental care is widespread among vertebrates and the observed patterns of parental care and investment are extremely diverse. Among amphibians, caecilians (Gymnophiona) exhibit considerable variation in reproductive modes, including both oviparity and viviparity, combined with highly unusual investment strategies (e.g. skin-feeding and intrauterine feeding). In the present study, current knowledge on the reproductive modes is integrated into an analysis of the evolutionary scenario of parental investment of caecilians. Phylogenetically basal caecilians possessing a biphasic life cycle that includes an aquatic larval stage invest in macrolecithal eggs directly corresponding to size at hatching. Some phylogenetically derived caecilians (i.e. the Teresomata) have a smaller clutch size and show a reduction to either medium-yolked (mesolecithal) or small-yolked (microlecithal) eggs. Via alternative pathways of parental investment, such as intrauterine feeding in viviparous taxa and maternal dermatotrophy in oviparous taxa, teresomatan caecilians increase both offspring size and quality. However, more data regarding reproductive biology are needed to obtain a fully resolved understanding of the evolution of reproduction in caecilian amphibians. (C) 2016 The Linnean Society of London KW - Amphibia KW - Gymnophiona KW - life history KW - parental care KW - phylogeny KW - reproductive investment Y1 - 2016 U6 - https://doi.org/10.1111/bij.12805 SN - 0024-4066 SN - 1095-8312 VL - 119 SP - 4 EP - 14 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kehlmaier, Christian A1 - Barlow, Axel A1 - Hastings, Alexander K. A1 - Vamberger, Melita A1 - Paijmans, Johanna L. A. A1 - Steadman, David W. A1 - Albury, Nancy A. A1 - Franz, Richard A1 - Hofreiter, Michael A1 - Fritz, Uwe T1 - Tropical ancient DNA reveals relationships of the extinct bahamian giant tortoise Chelonoidis alburyorum JF - Proceedings of the Royal Society of London : Series B, Biological sciences N2 - Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galapagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galapagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact. KW - Bahamas KW - biogeography KW - extinction KW - palaeontology KW - phylogeny Y1 - 2017 U6 - https://doi.org/10.1098/rspb.2016.2235 SN - 0962-8452 SN - 1471-2954 VL - 284 PB - The Royal Society CY - London ER -