TY - JOUR A1 - Koopmans, L. V. E. A1 - Wambsganß, Joachim T1 - On the probability of microlensing in gamma-ray burst afterglows N2 - The declining light curve of the optical afterglow of gamma-ray burst (GRB) GRB000301C showed rapid variability with one particularly bright feature at about t-t0=3.8d. This event was interpreted as gravitational microlensing by Garnavich, Loeb & Stanek and subsequently used to derive constraints on the structure of the GRB optical afterglow. In this paper, we use these structural parameters to calculate the probability of such a microlensing event in a realistic scenario, where all compact objects in the universe are associated with observable galaxies. For GRB000301C at a redshift of z=2.04, the a posteriori probability for a microlensing event with an amplitude of m>=0.95mag (as observed) is 0.7 per cent (2.7 per cent) for the most plausible scenario of a flat -dominated Friedmann- Robertson-Walker (FRW) universe with m=0.3 and a fraction f*=0.2 (1.0) of dark matter in the form of compact objects. If we lower the magnification threshold to m>=0.10mag, the probabilities for microlensing events of GRB afterglows increase to 17 per cent (57 per cent). We emphasize that this low probability for a microlensing signature of almost 1mag does not exclude that the observed event in the afterglow light curve of GRB000301C was caused by microlensing, especially in light of the fact that a galaxy was found within 2arcsec from the GRB. In that case, however, a more robust upper limit on the a posteriori probability of ~5 per cent is found. It does show, however, that it will not be easy to create a large sample of strong GRB afterglow microlensing events for statistical studies of their physical conditions on microarcsec scales. Y1 - 2001 ER - TY - JOUR A1 - Koopmans, L. V. E. A1 - Bruyn, A. G. A1 - Wambsganß, Joachim A1 - Fassnacht, C. D. T1 - A radio-microlensing caustic crossing in B1600+434? N2 - First, we review the current status of the detection of strong `external' variability in the CLASS gravitational B1600+434, focusing on the 1998 VLA 8.5-GHz and 1998/9 WSRT multi-frequency observations. We show that this data can best be explained in terms of radio-microlensing. We then proceed to show some preliminary results from our new multi-frequency VLA monitoring program, in particular the detection of a strong feature (~30%) in the light curve of the lensed image which passes predominantly through the dark-matter halo of the lens galaxy. We tentatively interpret this event, which lasted for several weeks, as a radio-microlensing caustic crossing, i.e. the superluminal motion of a micro-arcsec-scale jet-component in the lensed source over a single caustic in the magnification pattern, that has been created by massive compact objects along the line-of-sight to the lensed image. Y1 - 2001 UR - http://xxx.uni-augsburg.de/pdf/astro-ph/0004285 SN - 1-538-81076-5 ER -