TY - JOUR A1 - Koesterke, Lars A1 - Hamann, Wolf-Rainer A1 - Urrutia, Tanya T1 - Line-Profile Variability in the Wolf-Rayet Stars WR 135 and WR 111 N2 - We have obtained time-resolved observations of line-profile variations of the two Wolf-Rayet stars WR 135 and WR 111. The spectra, taken during two consecutive nights, cover a broad range from 4470 to 6590 Ang. The profile variability of the C iii emission line at 5696 Ang in WR 135 is shown in detail. The principal difficulties to constrain the velocity law from the frequency drift of discrete spectral features is discussed, emphasizing the crucial dependence on the adopted location of the line-emission region, and the possible necessity to distinguish between the motion of structures and the flow of the matter. - Full access to the observational data is provided via anonymous file transfer. Y1 - 2001 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Brown, John C. A1 - Feldmeier, Achim A1 - Oskinova, Lida T1 - On the wavelength drift of spectral features from structured hot star winds N2 - Spectral lines formed in stellar winds from OB stars are observed to exhibit profile variations. Discrete Absorption Components (DACs) show a remarkably slow wavelength drift with time. In a straightforward interpretation, this is in sharp contradiction to the steep velocity law predicted by the radiation-driven wind theory, and by semi- empirical profile fitting. In the present paper we re-discuss the interpretation of the drift rate. We show that the Co- rotating Interaction Region (CIR) model for the formation of DACs does not explain their slow drift rate as a consequence of rotation. On the contrary, the apparent acceleration of a spectral CIR feature is even higher than for the corresponding kinematical model without rotation. However, the observations can be understood by distinguishing between the velocity field of the matter flow, and the velocity law for the motion of the patterns in which the DAC features are formed. If the latter propagate upstream against the matter flow, the resulting wavelength drift mimics a much slower acceleration although the matter is moving fast. Additional to the DACs, a second type of recurrent structures is present in observed OB star spectra, the so-called modulations. In contrast to the DACs, these structures show a steep acceleration compatible with the theoretically predicted velocity law. We see only two possible consistent scenarios. Either, the wind is accelerated fast, and the modulations are formed in advected structures, while the DACs come from structures which are propagating upstream. Or, alternatively, steep and shallow velocity laws may co-exist at the same time in different spatial regions or directions of the wind. Y1 - 2001 ER -