TY - JOUR A1 - Vaz da Cruz, Vinícius A1 - Ignatova, Nina A1 - Couto, Rafael A1 - Fedotov, Daniil A1 - Rehn, Dirk R. A1 - Savchenko, Viktoriia A1 - Norman, Patrick A1 - Ågren, Hans A1 - Polyutov, Sergey A1 - Niskanen, Johannes A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Fondell, Mattis A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Föhlisch, Alexander A1 - Odelius, Michael A1 - Kimberg, Victor A1 - Gel’mukhanov, Faris T1 - Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s). Y1 - 2019 U6 - https://doi.org/10.1063/1.5092174 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Vaz da Cruz, Vinicius A1 - Eckert, Sebastian A1 - Iannuzzi, Marcella A1 - Ertan, Emelie A1 - Pietzsch, Annette A1 - Couto, Rafael C. A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Schmitt, Thorsten A1 - Lu, Xingye A1 - McNally, Daniel A1 - Jay, Raphael Martin A1 - Kimberg, Victor A1 - Föhlisch, Alexander A1 - Odelius, Michael T1 - Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering JF - Nature Communications N2 - Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-08979-4 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Sorgenfrei, Nomi A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Kühn, Danilo A1 - Neppl, Stefan A1 - Ovsyannikov, Ruslan A1 - Sezen, Hikmet A1 - Svensson, Svante A1 - Föhlisch, Alexander T1 - Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide JF - Advanced materials N2 - Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation. KW - catalysis KW - dichalcogenides KW - hydrogen evolution reaction KW - phase transitions KW - photoelectron spectroscopy Y1 - 2021 U6 - https://doi.org/10.1002/adma.202006957 SN - 0935-9648 SN - 1521-4095 VL - 33 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pietzsch, Annette A1 - Niskanen, Johannes A1 - Vaz da Cruz, Vinicius A1 - Büchner, Robby A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Jay, Raphael Martin A1 - Lu, Xingye A1 - McNally, Daniel A1 - Schmitt, Thorsten A1 - Föhlisch, Alexander T1 - Cuts through the manifold of molecular H2O potential energy surfaces in liquid water at ambient conditions JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 angstrom, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen ls to 4a(1) resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1 s to 2b(2) resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering. KW - water KW - potential ene rgy surface KW - RIXS Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2118101119 SN - 1091-6490 VL - 119 IS - 28 PB - National Acad. of Sciences CY - Washington, DC ER - TY - GEN A1 - Norell, Jesper A1 - Jay, Raphael Martin A1 - Hantschmann, Markus A1 - Eckert, Sebastian A1 - Guo, Meiyuan A1 - Gaffney, Kelly J. A1 - Wernet, Philippe A1 - Lundberg, Marcus A1 - Föhlisch, Alexander A1 - Odelius, Michael T1 - Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L-3-edge RIXS in the ferricyanide complex Fe(CN)(6)(3-), we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 779 KW - charge-transfer KW - relaxation dynamics KW - absorption-spectra KW - energy-conversion KW - basis-sets KW - ab-initio KW - complexes KW - photoelectron KW - spectroscopy KW - simulations Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437493 SN - 1866-8372 IS - 779 SP - 7243 EP - 7253 ER - TY - JOUR A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Sahle, Christoph J. A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Gilmore, Keith A1 - Pietzsch, Annette A1 - Dantz, Marcus A1 - Lu, Xingye A1 - McNally, Daniel E. A1 - Schmitt, Thorsten A1 - Vaz da Cruz, Vinicius A1 - Kimberg, Victor A1 - Föhlisch, Alexander A1 - Gel’mukhanov, Faris T1 - Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 +/- 2.1% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open. KW - structure of water KW - X-ray spectroscopy KW - continuous distribution model Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1815701116 SN - 0027-8424 VL - 116 IS - 10 SP - 4058 EP - 4063 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Sahle, Christoph J. A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Gilmore, Keith A1 - Pietzsch, Annette A1 - Dantz, Marcus A1 - Lu, Xingye A1 - McNally, Daniel E. A1 - Schmitt, Thorsten A1 - Vaz da Cruz, Vinicius A1 - Kimberg, Victor A1 - Föhlisch, Alexander T1 - Reply to Pettersson et al.: Why X-ray spectral features are compatible to continuous distribution models in ambient water T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1909551116 SN - 0027-8424 VL - 116 IS - 35 SP - 17158 EP - 17159 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Kühn, Danilo A1 - Sorgenfrei, Florian A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Musazayb, Abdurrahman A1 - Ovsyannikov, Ruslan A1 - Stråhlman, Christian A1 - Svensson, Svante A1 - Mårtensson, Nils A1 - Föhlisch, Alexander T1 - Capabilities of angle resolved time of flight electron spectroscopy with the 60 degrees wide angle acceptance lens T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 782 KW - Artof KW - electron spectroscopy KW - wide angle KW - time of flight KW - energy resolution KW - synchrotron Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436629 SN - 1866-8372 IS - 782 SP - 45 EP - 50 ER - TY - JOUR A1 - Kühn, Danilo A1 - Müller, Moritz A1 - Sorgenfrei, Florian A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Ovsyannikov, Ruslan A1 - Martensson, Nils A1 - Sanchez-Portal, Daniel A1 - Föhlisch, Alexander T1 - Directional sub-femtosecond charge transfer dynamics and the dimensionality of 1T-TaS2 JF - Scientific reports N2 - For the layered transition metal dichalcogenide 1T-TaS2, we establish through a unique experimental approach and density functional theory, how ultrafast charge transfer in 1T-TaS2 takes on isotropic three-dimensional character or anisotropic two-dimensional character, depending on the commensurability of the charge density wave phases of 1T-TaS2. The X-ray spectroscopic core-hole-clock method prepares selectively in-and out-of-plane polarized sulfur 3p orbital occupation with respect to the 1T-TaS2 planes and monitors sub-femtosecond wave packet delocalization. Despite being a prototypical two-dimensional material, isotropic three-dimensional charge transfer is found in the commensurate charge density wave phase (CCDW), indicating strong coupling between layers. In contrast, anisotropic two-dimensional charge transfer occurs for the nearly commensurate phase (NCDW). In direct comparison, theory shows that interlayer interaction in the CCDW phase - not layer stacking variations - causes isotropic three-dimensional charge transfer. This is presumably a general mechanism for phase transitions and tailored properties of dichalcogenides with charge density waves. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36637-0 SN - 2045-2322 VL - 9 IS - 488 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kühn, Danilo A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Sorgenfrei, Florian A1 - Föhlisch, Alexander T1 - The influence of x-ray pulse length on space-charge effects in optical pump/x-ray probe photoemission JF - New journal of physics : the open-access journal for physics N2 - Pump-probe photoelectron spectroscopy (PES) is a versatile tool to investigate the dynamics of transient states of excited matter. Vacuum space-charge effects can mask these dynamics and complicate the interpretation of electron spectra. Here we report on space-charge effects in Au 4f photoemission from a polycrystalline gold surface, excited with moderately intense 90 ps (FWHM) soft x-ray probe pulses, under the influence of the Coulomb forces exerted by a pump electron cloud, which was produced by intense 40 fs laser pulses. The experimentally observed kinetic energy shift and spectral broadening of the Au 4f lines, measured with highly-efficient time-of-flight spectroscopy, are in good agreement with simulations utilizing a mean-field model of the electrostatic pump electron potential. This confirms that the line broadening is predominantly caused by variations in the take-off time of the probe electrons without appreciable influence of local scattering events. Our findings might be of general interest for pump-probe PES with picosecond-pulse-length sources. KW - space-charge effects KW - mean-field model KW - x-ray photoemission KW - electron spectroscopy KW - pump-probe KW - ARTOF Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab2f5c SN - 1367-2630 VL - 21 PB - IOP Publ. Ltd. CY - Bristol ER -