TY - THES A1 - Dolniak, Blazej T1 - Functional characterisation of NIC2, a member of the MATE family from Arabidopsis thaliana (L.) Heynh. T1 - Funktionale Charakterisierung von NIC2, einem Mitglied der MATE Familie aus Arabidopsis thaliana (L.) Heynh. N2 - The multidrug and toxic compounds extrusion (MATE) family includes hundreds of functionally uncharacterised proteins from bacteria and all eukaryotic kingdoms except the animal kingdom, that function as drug/toxin::Na+ or H+ antiporters. In Arabidopsis thaliana the MATE family comprises 56 members, one of which is NIC2 (Novel Ion Carrier 2). Using heterologous expression systems including Escherichia coli and Saccharomyces cerevisiae, and the homologous expression system of Arabidopsis thaliana, the functional characterisation of NIC2 was performed. It has been demonstrated that NIC2 confers resistance of E. coli towards the chemically diverse compounds such as tetraethylammonium chloride (TEACl), tetramethylammonium chloride (TMACl) and a toxic analogue of indole-3-acetic acid, 5-fluoro-indole-acetic acid (F-IAA). Therefore, NIC2 may be able to transport a broad range of drug and toxic compounds. In wild-type yeast the expression of NIC2 increased the tolerance towards lithium and sodium, but not towards potassium and calcium. In A. thaliana, the overexpression of NIC2 led to strong phenotypic changes. Under normal growth condtions overexpression caused an extremely bushy phenotype with no apical dominance but an enhanced number of lateral flowering shoots. The amount of rossette leaves and flowers with accompanying siliques were also much higher than in wild-type plants and the senescence occurred earlier in the transgenic plants. In contrast, RNA interference (RNAi) used to silence NIC2 expression, induced early flower stalk development and flowering compared with wild-type plants. In additon, the main flower stalks were not able to grow vertically, but instead had a strong tendency to bend towards the ground. While NIC2 RNAi seedlings produced many lateral roots outgrowing from the primary root and the root-shoot junction, NIC2 overexpression seedlings displayed longer primary roots that were characterised by a 2 to 4 h delay in the gravitropic response. In addition, these lines exhibited an enhanced resistance to exogenously applied auxins, i.e. indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) when compared with the wild-type roots. Based on these results, it is suggested that the NIC2 overexpression and NIC2 RNAi phenotypes were due to decreased or increased levels of auxin, respectively. The ProNIC2:GUS fusion gene revealed that NIC2 is expressed in the stele of the elongation zone, in the lateral root cap, in new lateral root primordia, and in pericycle cells of the root system. In the vascular tissue of rosette leaves and inflorescence stems, the expression was observed in the xylem parenchyma cells, while in siliques it was also in vascular tissue, but as well in the dehiscence and abscission zones. The organ- and tissue-specific expression sites of NIC2 correlate with the sites of auxin action in mature Arabidopsis plants. Further experiments using ProNIC2:GUS indicated that NIC2 is an auxin-inducible gene. Additionally, during the gravitropic response when an endogenous auxin gradient across the root tip forms, the GUS activity pattern of the ProNIC2:GUS fusion gene markedly changed at the upper side of the root tip, while at the lower side stayed unchanged. Finally, at the subcellular level NIC2-GFP fusion protein localised in the peroxisomes of Nicotana tabacum BY2 protoplasts. Considering the experimental results, it is proposed that the hypothetical function of NIC2 is the efflux transport which takes part in the auxin homeostasis in plant tissues probably by removing auxin conjugates from the cytoplasm into peroxisomes. N2 - "Multidrug and Toxic Compounds Extrusion" (MATE) – Proteine sind Membranproteine, die eine Vielzahl komplexer und giftiger Substanzen transportieren können. Sie sind weit verbreitet und kommen in Bakterien und Höheren Organismen mit Ausnahme des Tierreichs vor. Insgesamt gibt es hunderte von bisher kaum untersuchten Genen dieser Familie, die eine hohe Sequenzhomologie aufweisen. In der Pflanze Arabidopsis thaliana wurden 56 Gene der MATE - Familie zugeordnet. Eines von ihnen, der "Novel Ion Carrier 2" (NIC2) wurde näher charakterisiert. Dafür wurden heterologe Expressionssysteme wie Bakterien (Escherichia coli) und Hefe (Saccharomyces cerevisiae) genutzt und transgene Pflanzen (Arabidopsis thaliana) hergestellt. Es wurde gezeigt, dass NIC2 Bakterien eine Resistenz gegenüber mehreren giftigen Stoffen verlieh. In Hefe erhöhte NIC2 die Salztoleranz gegenüber Lithium und Natrium, aber nicht gegenüber Kalium und Kalzium. Das deutet darauf hin, dass NIC2 diese Stoffe transportieren kann und so zur Entgiftung beziehungsweise erhöhter Stresstoleranz beiträgt. In Pflanzen führte die Überexpression von NIC2 zu dramatischen Änderungen im Wachstum. Die Pflanzen waren buschig ohne zentralen Blütenstand, hatten jedoch eine höhere Anzahl von Blättern und Blüten und längere Wurzeln mit einer im Vergleich zu den Wildtyppflanzen verzögerten gravitropen Antwort. In Gegensatz dazu entwickelten Pflanzen, in denen die Expression von NIC2 gehemmt wurde, früh einen zentralen Blütenstand, der allerdings nicht gerade wuchs, sondern die Tendenz hatte, sich zum Boden zu biegen. Das Wurzelsystem bestand aus einer Hauptwurzel und vielen sekundären Wurzeln und war im Vergleich zu den Wildtyppflanzen besser entwickelt. Vermutlich kann die Wuchsform auf einen veränderten Gehalt des Pflanzenhormons Auxin zurückgeführt werden. Die Expression von NIC2 wird durch Auxin induziert. Experimente, in denen die Aktivität eines Gens mit Hilfe eines Reportergens nachgewiesen wird, zeigten, dass NIC2 in Wurzeln, Blättern, Blütenstielen, Blüten und Schoten aktiv ist. Innerhalb der Zelle ist NIC2 in Peroxisomen lokalisiert. Peroxisomen sind kleine Organellen, die eine Rolle im Hormonstoffwechsel spielen können, wie z.B. im Fall von Auxinen. Die Daten sprechen dafür, dass NIC2 eine Funktion beim Auxintransport und somit bei der Auxin-Homöostase hat. KW - Ackerschmalwand KW - Auxine KW - Membranproteine KW - Arabidopsis KW - membrane protein KW - auxin Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5372 ER - TY - THES A1 - Arana-Ceballos, Fernando Alberto T1 - Biochemical and physiological studies of Arabidopsis thaliana Diacylglycerol Kinase 7 (AtDGK7) T1 - Biochemische physiologische Studien an der Arabidopsis thaliana Diazylglyzerol Kinase 7 (AtDGK7) N2 - A family of diacylglycerol kinases (DGK) phosphorylates the substrate diacylglycerol (DAG) to generate phosphatidic acid (PA) . Both molecules, DAG and PA, are involved in signal transduction pathways. In the model plant Arabidopsis thaliana, seven candidate genes (named AtDGK1 to AtDGK7) code for putative DGK isoforms. Here I report the molecular cloning and characterization of AtDGK7. Biochemical, molecular and physiological experiments of AtDGK7 and their corresponding enzyme are analyzed. Information from Genevestigator says that AtDGK7 gene is expressed in seedlings and adult Arabidopsis plants, especially in flowers. The AtDGK7 gene encodes the smallest functional DGK predicted in higher plants; but also, has an alternative coding sequence containing an extended AtDGK7 open reading frame, confirmed by PCR and submitted to the GenBank database (under the accession number DQ350135). The new cDNA has an extension of 439 nucleotides coding for 118 additional amino acids The former AtDGK7 enzyme has a predicted molecular mass of ~41 kDa and its activity is affected by pH and detergents. The DGK inhibitor R59022 also affects AtDGK7 activity, although at higher concentrations (i.e. IC50 ~380 µM). The AtDGK7 enzyme also shows a Michaelis-Menten type saturation curve for 1,2-DOG. Calculated Km and Vmax were 36 µM 1,2-DOG and 0.18 pmol PA min-1 mg of protein-1, respectively, under the assay conditions. Former protein AtDGK7 are able to phosphorylate different DAG analogs that are typically found in plants. The new deduced AtDGK7 protein harbors the catalytic DGKc and accessory domains DGKa, instead the truncated one as the former AtDGK7 protein (Gomez-Merino et al., 2005). N2 - Wachstum und Entwicklung sind die Kennzeichen lebender Systeme. Diese Prozesse unterliegen einer strengen Regulation im Organismus. Diacylglycerol (DAG) und Phosphatidsäure (PA) sind wesentliche Elemente in der Signalübertragung in Organismen. In Säugetieren kann DAG auf drei verschiedenen Wegen metabolisiert werden, die Entstehung von PA durch Phosphorylierung der freien Hydroxyl-Gruppe von DAG ist jedoch der am häufigsten vorkommende Stoffwechselweg. Die enzymatische Umsetzung dieser Reaktion wird von der Familie der Diacylglycerol-Kinasen (DGKs) katalysiert. Molekulare und biochemische Untersuchungen konnten die Anwesenheit von DGKs in Drosophila melanogaster, Arabidopsis thaliana und jüngst auch in Dictyostelium discoideum zeigen. In der vorliegenden Arbeit wird die Klonierung und Charakterisierung von AtDGK7 aus Arabidopsis thaliana präsentiert, einem Vertreter des pflanzlichen DGK-Clusters II. Das Transkript von AtDGK7 findet sich in der gesamten Pflanze, jedoch sind die Transkriptmengen in Blüten und jungem Gewebe stark erhöht. Rekombinant hergestelltes AtDGK7 ist katalytisch aktiv und akzeptiert DAG-ähnliche Moleküle mit mindestens einer ungesättigten Fettsäure als bevorzugtes Substrat. AtDGK2, ein weiteres Mitglied der DGK-Familie, und AtDGK7 metabolisieren Substrate, welche in Pflanzen physiologisch relevant sind. Das als DGK-Inhibitor beschriebene Molekül 6-{2-{4-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl}ethyl}-7-methyl-5H-thiazolo(3,2-a)pyrimidine-5-one (R59022) inhibiert bei Konzentrationen von 50-100 µM rekombinant hergestelltes AtDGK2 in vitro. In ähnlichen Konzentrationen eingesetzt modifiziert R59022 das Wurzelwachstum. Dies weist darauf hin, dass DGKs in Entwicklungsprozessen eine Rolle spielen. In in vitro Experimenten wurde AtDGK7 von R59022 allerdings erst in Konzentrationen über 100 µM inhibiert. Ferner wird in der vorliegenden Arbeit die erfolgreiche Klonierung einer cDNA beschrieben, die für AtDGK7 aus A. thaliana kodiert und welche im Vergleich zu der bereits bekannten cDNA um 439 bp länger ist. Expressionsanalysen mit Hilfe eines Promotor-ß-glucuronidase (GUS) Fusions-Produktes zeigten die Aktivität von AtDGK7 in vielen Geweben, vor allem aber in Schließzellen, im Konnektiv-Gewebe der Antheren, sowie besonders in den Spitzen der Seitenwurzeln. Physiologische Untersuchungen unter abiotischem Stress (Verwendung verschiedener Konzentrationen von Stickstoff, Saccharose, Auxin und Inhibitoren von Auxin-Transportern) wurden mit AtDGK7 T-DNA-Insertionslinien sowie mit den Promotor-GUS-Linien durchgeführt. AtDGK7 T-DNA-Insertionslinien zeigten eine starke Inhibierung des Seitenwurzel-Wachstums unter limitierenden Stickstoff- und/oder Saccharose-Konzentrationen. In einigen der T-DNA-Insertionslinien inhibierte die Zugabe eines Inhibitors für Auxin-Transport (TIBA; 2,3,5-triiodobenzoic acid) die Bildung von Haupt- und Seitenwurzeln fast vollständig. Die Inhibition des Wurzelwachstums in den T-DNA-Insertionslinien konnte teilweise durch die Zugabe von 50nM NAA (α-naphtalene acetic acid) revertiert werden. Aus den vorliegenden Ergebnissen wird die Hypothese abgeleitet, dass AtDGK7 im Zusammenspiel mit Auxin in Signaltransduktionsprozessen eine Rolle spielt, welche das Wachstum und die Entwicklung in Pflanzen regulieren. KW - AtDGK gene KW - Diacylglycerol KW - Phosphatidsäure KW - Diacylglycerol-Kinasen KW - Signaltransduktionsprozesse KW - AtDGK genes KW - auxin KW - diacylglycerol KW - phosphatidic acid KW - signaling Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13729 ER -