TY - THES A1 - Weiß, Jan T1 - Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymers T1 - Synthese und Selbstorganisation von mehrfach thermisch schaltbaren amphiphilen Blockcopolymeren N2 - In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step. N2 - Die Selbstorganisation von mehrfach thermisch schaltbaren Blockcopolymeren in verdünnter wässriger Lösung wurde mittels Trübungsphotometer, dynamischer Lichtstreuung, TEM Messungen, NMR sowie Fluoreszenzspektroskopie untersucht. Die schrittweise Überführung eines hydrophilen in ein hydrophobes Blockcopolymer beinhaltet ein oder mehr amphiphile Zwischenstufen mit einstellbarem hydrophilen zu lipophilen Anteil (HLB). Dies führt dazu, dass die Selbstorganisation solcher Polymere in Lösung nicht nur einem Alles-oder-nichts-Prinzip folgt sondern ein mehrstufiges Aggregationsverhalten beobachtet wird. Die Synthese von doppelt thermisch schaltbaren Diblockcopolymeren und dreifach thermisch schaltbaren Triblockcopolymeren wurde durch sequenzielle RAFT Polymerisation realisiert. Dazu wurden zweifach TMS-markierte RAFT Agentien verwendet, welche die Bestimmung der molaren Masse sowie der verbliebenen Endgruppenfunktionalität direkt aus einem Protonen NMR Spektrum erlauben. Mit diesen RAFT Agentien wurde zunächst eine Serie von doppelt thermisch schaltbaren Diblockcopolymeren aus Poly(N-n-propylacrylamid)-b-Poly(N-ethylacrylamid), welche sich lediglich durch die relativen Blocklängen unterscheiden, hergestellt. In Abhängigkeit von der relativen Blocklänge wurde ein unterschiedliches Aggregationsverhalten der Diblockcopolymere in verdünnter wässriger Lösung beobachtet. Des Weiteren wirken die komplementär TMS-markierten Endgruppen als NMR-Sonden während der schrittweisen Aggregation dieser Polymere. Reversible, temperaturabhängige Peakaufspaltung der TMS-Signale in der NMR Spektroskopie spricht für eine Aggregation in gemischte stern-/blumenartige Mizellen, in denen ein Teil der hydrophoben Endgruppen in den hyrophoben Kern zurückfaltet. Obendrein wurden dreifach thermisch schaltbare Triblockcopolymere aus Poly(N-n-propylacrylamid) (A), Poly(methoxydiethylen glycol acrylat) (B) und Poly(N-ethylacrylamid) (C) in allen möglichen Blocksequenzen (ABC, BAC, ACB) durch schrittweisen Aufbau mittels RAFT Polymerisation erhalten. Das Aggregationsverhalten dieser Polymere in verdünnter wässriger Lösung war relativ komplex und hing stark von der Position der einzelnen Blöcke in den Triblockcopolymeren ab. Besonders die Position des Blocks mit der niedrigsten LCST (A) war ausschlaggebend für die resultierenden Aggregate. So wurde oberhalb der ersten Phasenübergangstemperatur nur Aggregation der Triblockcopolymere beobachtet, wenn der A Block an einem der beiden Enden der Polymere lokalisiert war. Wurde der A Block hingegen in der Mitte der Polymere positioniert, entstanden unimere Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur, welche erst aggregierten, nachdem der zweite Block (B) seinen Phasenübergang durchlief. Die Transportereigenschaften dieser Triblockcopolymere wurden mittels Fluoreszenzspektroskopie getestet. Dazu wurde die Einlagerung eines hydrophoben, solvatochromen Fluoreszenzfarbstoffes, Nilrot, in Abhängigkeit der Temperatur untersucht. Im Gegensatz zu den Polymeren mit der Blocksequenz ABC oder ACB, zeigten die Polymere mit der Sequenz BAC eine verminderte Aufnahmefähigkeit des hydrophoben Farbstoffes oberhalb des ersten Phasenübergangs, was auf die fehlende Aggregation und die damit verbundenen relativ kleinen hydrophoben Domänen der unimolekularen Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur zurückzuführen ist. Aufgrund des zunehmenden Verlustes von funktionellen Endgruppen während der RAFT Synthese von Triblockcopolymeren wurde ein neuartiges Konzept zur Einschrittsynthese von mehrfach schaltbaren Blockcopolymeren entwickelt. Dieses erlaubt die Synthese von mehrfach schaltbaren Diblock- und Triblockcopoylmeren in einem einzelnen Reaktionsschritt. Die Copolymeriation von verschiedenen N-substituierten Maleimiden mit einem thermisch schaltbaren Styrolderivat (4-Vinylbenzylmethoxytetrakis(oxyethylene) ether) ergab alternierende Copolymere mit variabler LCST. Die Verwendung eines Überschusses dieses styrolbasierten Monomers erlaubt ferner die Synthese von Gradientenblockcopolymeren in einem einzelnen Polymerisationsschritt. KW - Selbstorganisation KW - Blockcopolymer KW - RAFT KW - temperaturschaltbar KW - Mizelle KW - self-assembly KW - block copolymer KW - RAFT KW - thermoresponsive KW - micelle Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53360 ER - TY - THES A1 - Stahlhut, Frank T1 - Entwicklung neuer triphiler, fluorkohlenstofffreier Blockcopolymere und Untersuchung ihrer Eigenschaften für Multikompartiment-Mizellen T1 - Synthesis of new triphilic fluorocarbon -free block copolymers and analysis of their suitability as multicompartment micelles N2 - Neue Systeme für triphile, fluorkohlenstofffreie Blockcopolymere in Form von Acrylat-basierten thermoresponsiven Blockcopolymeren sowie Acrylat- bzw. Styrol-basierten Terblock-Polyelektrolyten mit unterschiedlich chaotropen Kationen des jeweiligen polyanionischen Blocks wurden entwickelt. Multikompartiment-Mizellen, mizellare Aggregate mit ultrastrukturiertem hydrophobem Mizellkern die biologischen Strukturen wie dem Humanalbumin nachempfunden sind, sollten bei der Selbstorganisation in wässriger Umgebung entstehen. Durch Verwendung apolarer und polarer Kohlenwasserstoff-Domänen anstelle von fluorophilen Fluorkohlenstoff-Domänen sollte erstmals anhand solcher triphilen Systeme nachgewiesen werden, ob diese in der Lage zur selektiven Aufnahme hydrophober Substanzen in unterschiedliche Domänen des Mizellkerns sind. Mit Hilfe von sequentieller RAFT-Polymerisation wurden diese neuen triphilen Systeme hergestellt, die über einen permanent hydrophilen, eine permanent stark hydrophoben und einen dritten Block verfügen, der durch externe Einflüsse, speziell die Induzierung eines thermischen Coil-to-globule-Übergangs bzw. die Zugabe von organischen, hydrophoben Gegenionen von einem wasserlöslichen in einen polar-hydrophoben Block umgewandelt werden kann. Als RAFT-Agens wurde 4-(Trimethylsilyl)benzyl(3-(trimethylsilyl)-propyl)-trithiocarbonat mit zwei unterschiedlichen TMS-Endgruppen verwendet, das kontrollierte Reaktions-bedingungen sowie die molekulare Charakterisierung der komplexen Copolymere ermöglichte. Die beiden Grundtypen der linearen ternären Blockcopolymere wurden jeweils in zwei 2 Modell-Systeme, die geringfügig in ihren chemischen Eigenschaften sowie in dem Blocklängenverhältnis von hydrophilen und hydrophoben Polymersegmenten variierten, realisiert und unterschiedliche Permutation der Blöcke aufwiesen. Als ersten Polymertyp wurden amphiphile thermoresponsive Blockcopolymere verwendet. Modell-System 1 bestand aus dem permanent hydrophoben Block Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat), permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat) und den thermoresponsiven Block Poly(N,N‘-Diethylacrylamid), dessen Homopolymer eine LCST-Phasenübergang (LCST, engl.: lower critical solution temperature) bei ca. 36°C aufweist. Das Modell-System 2 bestand aus dem permanent hydrophilen Block Poly(2-(Methylsulfinyl)ethylacrylat), dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) und wiederum Poly(N,N‘-Diethylacrylamid). Im ternären Blockcopolymer erhöhte sich, je nach Blocksequenz und relativen Blocklängen, der LCST-Übergang auf 50 – 65°C. Bei der Untersuchung der Selbstorganisation für die Polymer-Systeme dieses Typs wurde die Temperatur variiert, um verschieden mizellare Überstrukturen in wässriger Umgebung zu erzeugen bzw. oberhalb des LCST-Übergangs Multikompartiment-Mizellen nachzuweisen. Die Unterschiede in der Hydrophilie bzw. den sterischen Ansprüche der gewählten hydrophilen Blöcke sowie die Variation der jeweiligen Blocksequenzen ermöglichte darüber hinaus die Bildung verschiedenster Morphologien mizellarer Aggregate. Der zweite Typ basierte auf ein Terblock-Polyelektrolyt-System mit Polyacrylaten bzw. Polystyrolen als Polymerrückgrat. Polymere ionische Flüssigkeiten wurden als Vorlage der Entwicklung zweier Modell-Systeme genommen. Eines der beiden Systeme bestand aus dem permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat, dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) sowie dem Polyanion-Block Poly(3-Sulfopropylacrylat). Die Hydrophobie des Polyanion-Blocks variierte durch Verwendung großer organischer Gegenionen, nämlich Tetrabutylammonium, Tetraphenylphosphonium und Tetraphenylstibonium. Analog wurde in einem weiteren System aus dem permanent hydrophilen Block Poly(4-Vinylbenzyltetrakis(ethylenoxy)methylether), dem permanent hydrophoben Block Poly(para-Methylstyrol) und Poly(4-Styrolsulfonat) mit den entsprechenden Gegenionen gebildet. Aufgrund unterschiedlicher Kettensteifigkeit in beiden Modell-Systemen sollte es bei der Selbstorganisation der mizellarer Aggregate zu unterschiedlichen Überstrukturen kommen. Mittels DSC-Messungen konnte nachgewiesen werden, dass für alle Modell-Systeme die Blöcke in Volumen-Phase miteinander inkompatibel waren, was eine Voraussetzung für Multikompartimentierung von mizellaren Aggregaten ist. Die Größe mizellarer Aggregate sowie der Einfluss externer Einflüsse wie der Veränderung der Temperatur bzw. der Hydrophobie und Größe von Gegenionen auf den hydrodynamischen Durchmesser mittels DLS-Untersuchungen wurden für alle Modell-Systeme untersucht. Die Ergebnisse zu den thermoresponsiven ternären Blockcopolymeren belegten , dass sich oberhalb der Phasenübergangstemperatur des thermoresponsiven Blocks die Struktur der mizellaren Aggregate änderte, indem der p(DEAm)-Block scheinbar kollabierte und so zusammen mit den permanent hydrophoben Block den jeweiligen Mizellkern bildete. Nach gewisser Equilibrierungszeit konnten bei Raumtemperatur dir ursprünglichen mizellaren Strukturen regeneriert werden. Hingegen konnte für die Terblock-Polyelektrolyt-Systeme bei Verwendung der unterschiedlich hydrophoben Gegenionen kein signifikanter Unterschied in der Größe der mizellaren Aggregate beobachtet werden. Zur Abbildung der mizellaren Aggregate mittels kryogene Transmissionselektronenmikroskopie (cryo-TEM) der mizellaren Aggregate war mit Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat) ein Modell-System so konzipiert, dass ein erhöhter Elektronendichtekontrast durch Schwefel-Atome die Visualisierung ultrastrukturierter hydrophober Mizellkerne ermöglichte. Dieser Effekt sollte in den Terblock-Polyelektrolyt-Systemen auch durch die Gegenionen Tetraphenylphosphonium und Tetraphenylstibonium nachgestellt werden. Während bei den thermoresponsiven Systemen auch oberhalb des Phasenübergangs kein Hinweis auf Ultrastrukturierung beobachtet wurde, waren für die Polyelektrolyt-Systeme, insbesondere im Fall von Tetraphenylstibonium als Gegenion Überstrukturen zu erkennen. Der Nachweis der Bildung von Multikompartiment-Mizellen war für beide Polymertypen mit dieser abbildenden Methode nicht möglich. Die Unterschiede in der Elektronendichte einzelner Blöcke müsste möglicherweise weiter erhöht werden um Aussagen diesbezüglich zu treffen. Die Untersuchung von ortsspezifischen Solubilisierungsexperimenten mit solvatochromen Fluoreszenzfarbstoffen mittels „steady-state“-Fluoreszenzspektroskopie durch Vergleich der Solubilisierungsorte der Terblockcopolymere bzw. –Polyelektrolyte mit den jeweiligen Solubilisierungsorten von Homopolymer- und Diblock-Vorstufen sollten den qualitativen Nachweis der Multikompartimentierung erbringen. Aufgrund der geringen Mengen an Farbstoff, die für die Solubilisierungsexperimente eingesetzt wurden zeigten DLS-Untersuchungen keine störenden Effekte der Sonden auf die Größe der mizellaren Aggregate. Jedoch erschwerten Quench-Effekte im Falle der Polyelektrolyt Modell-Systeme eine klare Interpretation der Daten. Im Falle der Modell-Systeme der thermoresponsiven Blockcopolymere waren dagegen deutliche solvatochrome Effekte zwischen der Solubilisierung in den mizellaren Aggregaten unterhalb und oberhalb des Phasenübergangs zu erkennen. Dies könnte ein Hinweis auf Multikompartimentierung oberhalb des LCST-Übergangs sein. Ohne die Informationen einer Strukturanalyse wie z.B. der Röntgen- oder Neutronenkleinwinkelstreuung (SAXS oder SANS), kann nicht abschließend geklärt werden, ob die Solubilisierung in mizellaren hydrophoben Domänen des kollabierten Poly(N,N‘-Diethylacrylamid) erfolgt oder in einer Mischform von mizellaren Aggregaten mit gemittelter Polarität. N2 - New systems for triphilic fluorine-carbon-free block copolymers in the form of acrylate-based thermoresponsive block copolymers and acrylate- and styrene-based ternary block polyelectrolytes with different chaotropic cations of the respective polyanionic blocks have been developed. Multicompartment micelles, micellar aggregates with ultrastructured hydrophobic micelle core which are bio-inspired by biological structures like human serum albumin, should occur during the self-assembly in aqueous environment. By having nonpolar and polar hydrocarbon domains instead of fluorocarbon domains in these triphilic systems, it should be possible to demonstrate for the first time, whether they are capable of selectively uptaking hydrophobic substances in different hydrophobic domains of the micelle core. These new triphilic systems were prepared by using sequential RAFT polymerization. These polymers are based on a permanently hydrophilic polymer block; a permanent highly hydrophobic block and a third block which is sensitive to the result of external influences, especially the induction of a thermal coil-to-globule transition in the case of thermoresponsive block copolymers or adding organic hydrophobic counter ions in the case of block polyelectrolytes. The third block for each system can be converted from a water-soluble in a polar hydrophobic block due to external stimulus. The RAFT agent, 4- (trimethylsilyl) benzyl (3- (trimethylsilyl) propyl) trithiocarbonate, has two different TMS-labeled end groups, which enable controlled polymerization conditions and the exact molecular characterization of the complex copolymers. Each of the two basic types of linear ternary block copolymers, which were prepared for this work, were implemented in two 2 model systems that varied slightly in their chemical properties, as well as in the block length ratio of hydrophilic and hydrophobic polymer segments and different block sequences. The first polymer type is based on amphiphilic thermoresponsive block copolymers. Model system 1 consisted of the permanent hydrophobic block p(1,3-bis (butylthio) prop-2-yl acrylate), the permanently hydrophilic block p(oligo (ethylene glycol) mono methyl ether acrylate) and the thermoresponsive block p(N,N–diethyl acrylamide) whose homopolymer has a LCST (lower critical solution temperature) like phase transition approximately about 36°C. The model system 2 consisted of the permanent hydrophilic block p(2- (methylsulfinyl) ethyl acrylate), the permanently hydrophobic block p(2-ethylhexyl acrylate) and again p(N,N–diethyl acrylamide). The LCST is increased in ternary block copolymers to 50 - 65°C, depending on the block sequence and relative block lengths. To study the self-assembly of these two polymer systems, their aqueous micellar solutions where analyzed above and below LCST to produce different micellar superstructures in an aqueous environment and to prove the occurrence of multicompartment micelles above LCST. The differences in the hydrophilicity or the individual steric requirements of the chosen hydrophilic blocks as well as the variation of the respective block sequences lead additionally to different morphologies of micellar aggregates. The second type of polymers is based on ternary block polyelectrolytes with polyacrylates and polystyrenes as polymer backbone respectively. Polymeric ionic liquids were taken as role model for the development of two model systems of block polyelectrolytes. One of the two systems consisting of the permanently hydrophilic p(oligo (ethylene glycol) mono methyl ether acrylate), the permanent hydrophobic block p(2-ethylhexyl acrylate) and the polyanion block p(3-sulfopropyl acrylate) (= model system 3). The hydrophobicity of the polyanion blocks varied largely by using organic counter ions, namely tetrabutyl ammonium, tetraphenyl phosphonium and tetraphenyl stibonium. Analogously, model system 4 consists of a permanently hydrophilic block p(4-vinylmethoxybenzyltetrakis (oxyethylene) ether), a permanently hydrophobic block p(para-methyl styrene) and p(4-styrene sulfonate) formed with the corresponding counter ions. Due to different chain stiffness in both model systems there should be different superstructures of micellar aggregates in aqueous solution. DSC (differential scanning calorimetry) measurements could demonstrate that the all polymer blocks for each modell system were incompatible with each other in bulk phase. This property is a prerequisite for ultra-structured hydrophobic cores of micellar aggregates. The influence of external factors such as change of temperature or change of hydrophobicity and size of counter ions on the size of micellar aggregates for all model systems was examined by DLS measurements. The results on the thermoresponsive ternary block copolymers showed that above the phase transition temperature of the thermo-responsive block the structure of micellar aggregates changed because the p(N,N–diethyl acrylamide) block apparently collapsed formed a subdivided micellar core together with the permanently hydrophobic block. Some equilibration time for the thermoresponsive block copolymer systems were needed to ensure that heoriginal micellar structures could be regenerated after cooling heated auqeous micellar solutions to room temperature. However, for the ternary block polyelectrolytes, there was no significant difference in the size of the micellar aggregates due to the exchange of counter ions which differ by their hydrophobicity. For imaging the micellar aggregates and especially multicompartment micelles by means of cryogenic transmission electron microscopy (cryo-TEM), the model system 1 with p(1,3-bis (butylthio) -prop-2-yl acrylate) as permanently hydrophobic block was specifically designed so that the increased electron density contrast by sulfur atoms should enable the visualization of multicompartment micelles. This effect should be readjusted in the ternary block polyelectrolyte systems by the counter ions tetraphenyl phosphonium and tetraphenyl stibonium. While in the thermoresponsive block copolymer systems it was possible to observe new kinds of micellar aggregates above LCST, there was no indication on ultrastructuring in the micellar cores for all analyzed systems. Otherwise by using tetraphenyl stibonium counter ions in block polyelectrolyte systems, some kind of ultrastructured micellar aggregates with seemingly subdivided micellar cores could be observed. The detection of the formation of multicompartment micelles was not possible for both types of polymers with this direct imaging method. The differences in the electron density of individual blocks might have to be further increased to make statements concerning the self-assembly into multicompartment micelles. Site-specific solubilization experiments with solvatochromic fluorescent dyes by using steady-state fluorescence spectroscopy should provide the qualitative evidence of multicompartment micelles. The selective solubilization areas of different kinds of substances in self-assembled structures of all ternary block copolymers and ternary polyelectrolytes were compared with the solubilization areas in their respective homopolymer and diblock precursors. Because of the small amounts of dye that have been used for the solubilization DLS measurements showed no interfering effects of the probes on the size of the micellar aggregates. However, quenching effects made a clear interpretation of the data in the case of polyelectrolyte model systems difficult. In the case of model systems 1 and 2 a change of the solubilization areas of fluorescent dyes due to the occurrence significant solvatochromic effects (stokes shifts) above LCST could be observed. The effect was reversibel. This could be an indication that the micellar aggregates self-assemble into multicompartment micelles above the LCST transition. Without the information of a structural analysis such as the small angle x-ray scattering or small angle neutron scattering (SAXS or SANS), it cannot be conclusively clarified whether the solubilization occurs in micellar hydrophobic domains of the collapsed p(N,N–diethyl acrylamide), or in a mixed form of micellar aggregates with mixed polarity. KW - Blockcopolymere KW - RAFT KW - Multikompartiment-Mizellen KW - cryo-TEM KW - Solubilisierung KW - Fluoereszenzsonden KW - block copolymers KW - triphilic KW - RAFT KW - multicompartment micelles KW - cryo-TEM KW - fluorescent dyes KW - fluorescence probe experiments KW - triphil Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96299 SP - iv, 191 ER - TY - THES A1 - Rettig, Hartmut Arnim T1 - Methoden zur Synthese von definierten bioorganisch-synthetischen Blockcopolymeren T1 - Pathways to defined bioorganic-synthetic conjugates N2 - Bioorganisch-synthetische Blockcopolymere sind sowohl für die Materialwissenschaft als auch für die Medizin hochinteressant. Diese Arbeit beschäftigte sich mit neuen Synthesewegen für die Herstellung dieser Blockcopolymere. Zunächst wurde der klassische Ansatz zur Herstellung eines Blockcopolymers über die Kupplung der beiden Segmente aufgegriffen. Hierzu wurde eine Methode zur Synthese von selektiv säureendfunktionalisierten Polyacrylaten mittels einer terminalen Benzylesterschutzgruppe vorgestellt. Für die Herstellung von bioorganisch-synthetischen Blockcopolymeren mit einem größeren Polymersegment wurde daher ein anderer Syntheseansatz entwickelt. Dieser geht von einem funktionalisierten Oligopeptid aus, an dem durch Polymerisation das synthetische Segment aufgebaut wird. Der Aufbau erfolgte durch kontrolliert radikalische Polymerisation, um ein möglichst definiertes Segment zu erhalten. Zunächst wurde eine Synthese von Oligopeptid-Makroinitiatoren für die ATRP-Polymerisation durchgeführt. Es konnte gezeigt werden, dass in geeigneten polaren Lösungsmitteln (DMSO, DMF) eine Polymerisation mit dem ATRP-Oligopeptid-Makroinitiator erfolgreich ist. Allerdings treten während der Polymerisation Wechselwirkungen zwischen dem Katalysator und dem Oligopeptid auf. Eine Alternative bietet die RAFT-Polymerisation, da sie ohne einen Katalysator durchgeführt wird. Es gelang ausgehend von dem Oligopeptid-ATRP-Makroinitiator den Überträger herzustellen. Die RAFT-Polymerisation mit einem Oligopeptidüberträger stellt eine wichtige Methode für die Herstellung von bioorganisch-synthetischen Blockcopolymeren dar. Sie besitzt eine hohe Toleranz gegenüber funktionellen Gruppen. Die so hergestellten Blockcopolymere sind frei von Verunreinigungen, wie z.B. Übergangsmetallen. Dabei läßt sich das Molekulargewicht des synthetischen Blocks bei einer Polydispersität um 1,2 gut kontrollieren. N2 - Bioorganic – synthetic conjugates have received a lot of attention concerning their potentials in the fields of material science, pharmaceutics and medicine. This work presents new synthetic routes to these conjugates. For conjugates consisting of small blocks an approach via coupling is possible. For larger blocks it was necessary to develop a different approach via controlled radical polymerisation methods. To begin with oligopeptide macroinitiators for Atom Transfer Radical Polymerisation were synthesized and successful applied in polymerization. The reaction conditions were optimized by studying the polymerisation kinetics. Although the polymerization results in well-defined products, interactions between the copper catalyst and the peptide are evident and cannot be suppressed. To overcome this problem the polymerization method had to be changed. Therefore oligopeptide-based reversible addition fragmentation transfer (RAFT) agents were developed. Well-defined conjugates comprising sequenz-defined peptides and synthetic polymers could be accessed by applying RAFT polymerization techniques in combination with the peptide macrotransfer agents. Polymerization reactions of n-butyl acrylate were performed in solution, yielding peptide-polymer conjugates with controllable molecular weight and low polydispersities. KW - ATRP KW - ATRP KW - RAFT KW - Blockcopolymer KW - Peptid KW - Makroinitiator KW - ATRP KW - RAFT KW - conjugates KW - peptide Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10293 ER - TY - THES A1 - Nozari, Samira T1 - Towards understanding RAFT aqueous heterophase polymerization T1 - Zum Verständnis der wässrigen Heterophasenpolymerisation mit RAFT N2 - Reversible addition-fragmentation transfer (RAFT) was used as a controlling technique for studying the aqueous heterophase polymerization. The polymerization rates obtained by calorimetric investigation of ab initio emulsion polymerization of styrene revealed the strong influence of the type and combination of the RAFT agent and initiator on the polymerization rate and its profile. The studies in all-glass reactors on the evolution of the characteristic data such as average molecular weight, molecular weight distribution, and average particle size during the polymerization revealed the importance of the peculiarities of the heterophase system such as compartmentalization, swelling, and phase transfer. These results illustrated the important role of the water solubility of the initiator in determining the main loci of polymerization and the crucial role of the hydrophobicity of the RAFT agent for efficient transportation to the polymer particles. For an optimum control during ab-initio batch heterophase polymerization of styrene with RAFT, the RAFT agent must have certain hydrophilicity and the initiator must be water soluble in order to minimize reactions in the monomer phase. An analytical method was developed for the quantitative measurements of the sorption of the RAFT agents to the polymer particles based on the absorption of the visible light by the RAFT agent. Polymer nanoparticles, temperature, and stirring were employed to simulate the conditions of a typical aqueous heterophase polymerization system. The results confirmed the role of the hydrophilicity of the RAFT agent on the effectiveness of the control due to its fast transportation to the polymer particles during the initial period of polymerization after particle nucleation. As the presence of the polymer particles were essential for the transportation of the RAFT agents into the polymer dispersion, it was concluded that in an ab initio emulsion polymerization the transport of the hydrophobic RAFT agent only takes place after the nucleation and formation of the polymer particles. While the polymerization proceeds and the particles grow the rate of the transportation of the RAFT agent increases with conversion until the free monomer phase disappears. The degradation of the RAFT agent by addition of KPS initiator revealed unambigueous evidence on the mechanism of entry in heterophase polymerization. These results showed that even extremely hydrophilic primary radicals, such as sulfate ion radical stemming from the KPS initiator, can enter the polymer particles without necessarily having propagated and reached a certain chain length. Moreover, these results recommend the employment of azo-initiators instead of persulfates for the application in seeded heterophase polymerization with RAFT agents. The significant slower rate of transportation of the RAFT agent to the polymer particles when its solvent (styrene) was replaced with a more hydrophilic monomer (methyl methacrylate) lead to the conclusion that a complicated cooperative and competitive interplay of solubility parameters and interaction parameter with the particles exist, determining an effective transportation of the organic molecules to the polymer particles through the aqueous phase. The choice of proper solutions of even the most hydrophobic organic molecules can provide the opportunity of their sorption into the polymer particles. Examples to support this idea were given by loading the extremely stiff fluorescent molecule, pentacene, and very hydrophobic dye, Sudan IV, into the polymer particles. Finally, the first application of RAFT at room temperature heterophase polymerization is reported. The results show that the RAFT process is effective at ambient temperature; however, the rate of fragmentation is significantly slower. The elevation of the reaction temperature in the presence of the RAFT agent resulted in faster polymerization and higher molar mass, suggesting that the fragmentation rate coefficient and its dependence on the temperature is responsible for the observed retardation. N2 - Um neue Materialien mit außergewöhnlichen Eigenschaften zu erstellen, muss man in der Lage sein, die Struktur der Moleküle zu kontrollieren, aus denen die Materialien bestehen. Für das Maßschneidern solcher neuer Eigenschaften besitzen Polymere ein großes Potenzial: Dies sind sehr lange Moleküle, die aus einer großen Zahl von kleineren Einheiten aufgebaut sind. Proteine und DNS sind Beispiele für natürliche Polymere; Plastik und Gummi sind Beispiele für künstliche Polymere. Letztere werden üblicherweise durch das Zusammenfügen einer Reihe von kleineren Molekülen, den Monomeren, hergestellt. Schon lange versuchen Wissenschaftler, die Anordnung, Anzahl und Art dieser Monomere zu kontrollieren, die sich in der Struktur der Polymermoleküle widerspiegeln. Die gebräuchlichste Methode zur kommerziellen Produktion von Polymeren ist die so genannte freie radikalische Polymerisation. Die Strukturkontrolle durch diese Methode ist jedoch relativ schwierig und wurde maßgeblich erst im letzten Jahrzehnt entwickelt. Trotz der Existenz einiger effektiver Kontrollmethoden ist ihre industrielle Anwendung bislang sehr beschränkt, weil sie nicht für die Emulsionspolymerisation verwendbar sind. Die Emulsionspolymerisation ist die gängigste Technik in der industriellen Produktion von Polymeren. Es handelt sich dabei um ein vergleichsweise umweltfreundliches Verfahren, denn es werden keine organischen Lösungsmittel verwendet. Stattdessen dient Wasser als Lösungsmittel, in dem die Polymere in Form von kleinen, fein verteilten Partikeln vorliegen. In der Natur kommt dieses Prinzip beispielsweise in Pflanzen bei der Bildung von Kautschuk - allgemein als Latex bezeichnet - vor. Schließlich ist die Emulsionspolymerisation einfach durchzuführen: Das Produkt ist in vielen Fällen gebrauchsfertig, und es gibt viele technische Vorteile im Vergleich zu anderen Herstellungsprozessen. Doch bevor die Probleme beim Einsatz von Kontrollmethoden in der Emulsionspolymerisation gelöst werden können, müssen erst ihre Ursachen geklärt werden. Dies ist eine unverzichtbare Vorraussetzung zum Übertragen von Forschungsergebnissen auf das tägliche Leben. Ziel dieser Arbeit ist die Untersuchung der Probleme, die für die kontrollierte radikalische Polymerisation in Emulsion von Bedeutung sind. Die wichtigste Fragestellung in der Emulsionspolymerisation zielt auf die Löslichkeit der Reaktionskomponenten in den verschiedenen Phasen, wie z.B. in Wasser oder in den Polymerpartikeln. Die Kontrollmethode der Wahl für diese Arbeit ist "Reversibler Additions-Fragmentierungs Transfer" (RAFT). Die RAFT-Methode ist die modernste Kontrollmethode, und sie ist für viele Reaktionsbedingungen und viele Arten von Monomeren anwendbar. T2 - Towards understanding RAFT aqueous heterophase polymerization KW - Heterophasenpolymerisation KW - Emulsion KW - RAFT KW - kontrollierte radikalische Polymerisation KW - RAFT KW - controlled radical polymerization Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5801 ER - TY - THES A1 - Miasnikova, Anna T1 - New hydrogel forming thermo-responsive block copolymers of increasing structural complexity T1 - Neue Hydrogel-bildende thermisch schaltbare Blockcopolymere von zunehmender struktureller Komplexität N2 - This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into “smart” hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. %. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. % at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, “smart” viscosifiers and gelators displaying tunable gelling and mechanical properties. N2 - Diese Arbeit befasst sich mit der RAFT-vermittelten Synthese und Charakterisierung von stimuli-empfindlichen Polymeren und ihrer Selbstorganisation zu „intelligenten” Hydrogelen. Die Hydrogele wurden so entwickelt, dass sie bei niedrigen Temperaturen stark quellen, bei Temperaturerhöhung jedoch reversibel in einem hydrophoben, kollabierten Zustand umgewandelt werden. Mit dem permanent hydrophoben Polystyrol (PS) und dem hydrophilen, thermisch schaltbaren Poly(methoxy-diethylen¬glycol-acrylat) (PMDEGA) als Bausteine, wurden unterschiedliche Gelierungsverhalten und thermische Übergangstemperaturen erreicht. Zur Synthese von Diblock-, symmetrischen Triblock- und dreiarmigen Sternblock-Copolymeren wurden neue funktionelle Kettenüberträger entwickelt. Diese gestatteten es, tert-butyl Benzoeester und Benzoesäure Endgruppen in die Polymere einzubauen, die einerseits eine effiziente Analyse mittels Routine 1H-NMR und darüber hinaus eine spätere Funktionalisierung der Endgruppen mit einer Fluoreszenzsonde ermöglichten. Da über PMDEGA kaum Daten vorlagen, wurde der Einfluss von Molekulargewicht, Endgruppen und Architektur auf das thermo-responsive Verhalten untersucht. Die speziellen Kettenüberträger ermöglichten es, gezielt hydrophobe wie hydrophile Endgruppen in die Polymere einzuführen. Die Trübungspunkte der wässerigen Lösungen von PMDEGA zeigten sich bis zu relativ hohen molaren Massen abhängig gegenüber allen untersuchten Variablen, nämlich dem Molekulargewicht, der Art und Zahl von Endgruppen. Durch Variation der diversen Parameter ließ sich die Schalttemperatur von PMDEGA in physiologisch relevanten Temperaturbereich von 20 bis 40 °C einstellen. Um die Polymere für einen zweiten Stimulus, nämlich Licht, empfindlich zu machen, wurden Azobenzol-funktionalisierte Acrylate synthetisiert und statistisch mit MDEGA copolymerisiert. Die Zusammensetzung der Polymeren wurde variiert und das isotherme Schalten der Löslichkeit durch Licht untersucht. Obwohl ein reversibles Schalten erreicht wurde, waren die Unterschiede zwischen den Trübungstemperaturen von UV-Licht bestrahlten und unbestrahlten Proben nur gering. Interessanterweise senkte die UV-Bestrahlung, d.h. ein erhöhter Gehalt von cis-Azobenzol-Gruppen, die Trübungstemperaturen herab. Dies ist genau umgekehrt als für azobenzolbasierten Systeme klassisch beschrieben. Die Gelbildung der verschiedenen Blockcopolymere von PS und PMDEGA wurde mittels Rheologie untersucht. Dabei traten deutliche Unterschiede auf, zwischen dem Gelierungsverhalten der Diblockcopolymere, die nur einen PS Block enthalten, dem der symmetrischen Triblockcopolymere, die zwei assoziative PS Endblöcken besitzen, und dem der Sternpolymere, die drei assoziative PS Blöcke aufweisen. Unabhängig von der Länge des hydrophilen Blockes, bilden Diblockcopolymere des Typs PS11-PMDEGAn keine Gele, sondern selbst bei hohen Konzentrationen von 40 Gew. % Lösungen. Im Gegensatz dazu bildeten die Triblockcopolymere des Typs PS8-PMDEGAn-PS8 Gele bei niedrigen Temperaturen, vereinzelt schon ab 3.5 wt. %. Mit steigender Temperatur, tritt bereits unterhalb des Trübungspunktes für diese Systeme ein Gel-Sol Übergang auf. Der Gel-Sol Übergang bewegt sich zu höheren Temperaturen mit steigende Länge des hydrophilen inneren Blocks. Dieser Trend verstärkt sich mit zunehmender Anzahl von Endblöcken und deren Länge. An der Trübungstemperatur veränderten sich die mechanischen Eigenschaften aller Gele signifikant und die gebildeten flüssigen Dispersionen ließen sich reversibel beim Abkühlen wieder zu Gel schalten. Diese Arbeit, zeigt dass PMDEGA ein bei niedrigen Temperaturen gut wasserlösliches, nicht-ionisches, thermisch-schaltbares und wahrscheinlich biokompatibles Polymer ist. PMDEGA liest sich einfach mittels den RAFT-Verfahren molekular maßschneiden, mit spezifischen Endgruppen und komplexen Polymerarchitekturen. Solche amphiphilen Triblock- und Sternblock-Copolymeren hoher Molmasse, wirken als assoziative Telechele. Daher eigenen sich bei entsprechendem Design diese amphiphilen Blockcopolymere als effiziente Verdicker und Gelbildner mit einstellbaren mechanischen und thermischen Eigenschaften. KW - Blockcopolymere KW - Selbstorganisation KW - thermisch schaltbar KW - LCST KW - RAFT KW - block copolymers KW - self-assembly KW - thermoresponsive KW - LCST KW - RAFT Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59953 ER - TY - THES A1 - Mertoglu, Murat T1 - The synthesis of well-defined functional homo- and block copolymers in aqueous media via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization T1 - - N2 - New chain transfer agents based on dithiobenzoate and trithiocarbonate for free radical polymerization via Reversible Addition-Fragmentation chain Transfer (RAFT) were synthesized. The new compounds bear permanently hydrophilic sulfonate moieties which provide solubility in water independent of the pH. One of them bears a fluorophore, enabling unsymmetrical double end group labelling as well as the preparation of fluorescent labeled polymers. Their stability against hydrolysis in water was studied, and compared with the most frequently employed water-soluble RAFT agent 4-cyano-4-thiobenzoylsulfanylpentanoic acid dithiobenzoate, using UV-Vis and 1H-NMR spectroscopy. An improved resistance to hydrolysis was found for the new RAFT agents, providing good stabilities in the pH range between 1 and 8, and up to temperatures of 70°C. Subsequently, a series of non-ionic, anionic and cationic water-soluble monomers were polymerized via RAFT in water. In these experiments, polymerizations were conducted either at 48°C or 55°C, that are lower than the conventionally employed temperatures (>60°C) for RAFT in organic solvents, in order to minimize hydrolysis of the active chain ends (e.g. dithioester and trithiocarbonate), and thus to obtain good control over the polymerization. Under these conditions, controlled polymerization in aqueous solution was possible with styrenic, acrylic and methacrylic monomers: molar masses increase with conversion, polydispersities are low, and the degree of end group functionalization is high. But polymerizations of methacrylamides were slow at temperatures below 60°C, and showed only moderate control. The RAFT process in water was also proved to be a powerful method to synthesize di- and triblock copolymers including the preparation of functional polymers with complex structure, such as amphiphilic and stimuli-sensitive block copolymers. These include polymers containing one or even two stimuli-sensitive hydrophilic blocks. The hydrophilic character of a single or of several blocks was switched by changing the pH, the temperature or the salt content, to demonstrate the variability of the molecular designs suited for stimuli-sensitive polymeric amphiphiles, and to exemplify the concept of multiple-sensitive systems. Furthermore, stable colloidal block ionomer complexes were prepared by mixing anionic surfactants in aqueous media with a double hydrophilic block copolymer synthesized via RAFT in water. The block copolymer is composed of a noncharged hydrophilic block based on polyethyleneglycol and a cationic block. The complexes prepared with perfluoro decanoate were found so stable that they even withstand dialysis; notably they do not denaturate proteins. So, they are potentially useful for biomedical applications in vivo. N2 - Ziel der vorliegenden Arbeit war es, neue Kettenübertragungs Agenzien, basierend auf Dithiobenzoat- und Trithiocarbonatderivaten zu synthetisieren, welche in der "Reversiblen Additions-Fragmentierungs Kettenübertragungs-Polymerisation" (RAFT) eingesetzt werden können. Die neu synthetisierten Verbindungen zeichnen sich durch permanent hydrophile Sulfonatgruppen aus, welche eine pH-unabhängige Löslichkeit in Wasser ermöglichen. Eine dieser Verbindungen trägt ein Fluorophore, wodurch eine asymmetrische doppelte Endgruppenmarkierung sowie die Herstellung von Fluoreszenzmarkierten Polymeren möglich ist. Die Hydrolysestabilität dieser Verbindungen in wässriger Lösung im Vergleich mit dem z. Zeit bekanntesten wasserlöslichen RAFT Agenz (4-Cyano-4-thiobenzoylsulfanylpentansäuredithiobenzoate) wurde unter Anwendung spektroskopischer Methoden (UV-Vis, 1H-NMR) untersucht. Dabei wurde festgestellt, dass diese neue Verbindungen deutlich bessere Hydrolysestabiltäten im pH-Bereich von 1-8 und bis zu einer Temperatur von 70°C besitzen. Die neuen RAFT-Verbindungen wurden ebenfalls bezgl. Ihrer Eignung in der Polymerisation von wasserlöslichen nichtionischen, anionischen und kationischen Monomeren in wässrigem Medium bei 48°C und 55°C getestet. Unter diesen Bedingungen konnten Vinylverbindungen wie z. B. Styrenderivate. Acrylate und Methacrylate kontrolliert polymerisiert werden: Die Molmasse stieg mit dem Umsatz, die Polydispersitäten waren niedrig und die isolierten Polymere zeigten Grad an Endgruppenfunktionalität. Bei der Polymerisation von Methacrylamiden wurde bei Polymerisationstemperaturen unter 60°C nur eine mäßige Kontrolle gefunden. Es konnte weiterhin die RAFT Polymerisation in Wasser als leistungsstarke Methode zur Herstellung definierter Di- und Triblockcopolymere, einschließlich der Synthese von funktionalen Polymeren mit komplexer Struktur – beispielsweise amphiphiler- und schaltbare (stimuli responsive) Blockcopolymere entwickelt werden. Dies beinhaltet auch Polymere, die einen oder zwei schaltbare hydrophile Polymerblöcke enthalten. Der hydrophile Eigenschaft eines oder mehrer Blöcke kann durch äußere Reize wie pH-Änderung, Temperatur oder Salzgehalt geändert werden. Diese Beispiele demonstrierten die Variabilität des für schaltbare Polyamphiphile notwendigen Designs und zeigten exemplarisch das Konzept für multi-sensitive Systeme. KW - RAFT KW - wasser KW - blockcopolymere KW - stimuli-sensitive KW - RAFT KW - water KW - blockcopolymer KW - stimuli-sensitive Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-2338 ER - TY - THES A1 - Kristen, Juliane Ute T1 - Amphiphilic BAB-triblock copolymers bearing fluorocarbon groups : synthesis and self-organization in aqueous media T1 - Amphiphile BAB-Triblockcopolymere mit Fluorcarbon-Gruppen : Synthese und Selbstorganisation in wässrigen Medien N2 - In this work new fluorinated and non-fluorinated mono- and bifunctional trithiocarbonates of the structure Z-C(=S)-S-R and Z-C(=S)-S-R-S-C(=S)-Z were synthesized for the use as chain transfer agents (CTAs) in the RAFT-process. All newly synthesized CTAs were tested for their efficiency to moderate the free radical polymerization process by polymerizing styrene (M3). Besides characterization of the homopolymers by GPC measurements, end- group analysis of the synthesized block copolymers via 1H-, 19F-NMR, and in some cases also UV-vis spectroscopy, were performed attaching suitable fluorinated moieties to the Z- and/or R-groups of the CTAs. Symmetric triblock copolymers of type BAB and non-symmetric fluorine end- capped polymers were accessible using the RAFT process in just two or one polymerization step. In particular, the RAFT-process enabled the controlled polymerization of hydrophilic monomers such as N-isopropylacrylamide (NIPAM) (M1) as well as N-acryloylpyrrolidine (NAP) (M2) for the A-blocks and of the hydrophobic monomers styrene (M3), 2-fluorostyrene (M4), 3-fluorostyrene (M5), 4-fluorostyrene (M6) and 2,3,4,5,6-pentafluorostyrene (M7) for the B-blocks. The properties of the BAB-triblock copolymers were investigated in dilute, concentrated and highly concentrated aqueous solutions using DLS, turbidimetry, 1H- and 19F-NMR, rheology, determination of the CMC, foam height- and surface tension measurements and microscopy. Furthermore, their ability to stabilize emulsions and microemulsions and the wetting behaviour of their aqueous solutions on different substrates was investigated. The behaviour of the fluorine end-functionalized polymers to form micelles was studied applying DLS measurements in diluted organic solution. All investigated BAB-triblock copolymers were able to form micelles and show surface activity at room temperature in dilute aqueous solution. The aqueous solutions displayed moderate foam formation. With different types and concentrations of oils, the formation of emulsions could be detected using a light microscope. A boosting effect in microemulsions could not be found adding BAB-triblock copolymers. At elevated polymer concentrations, the formation of hydrogels was proved applying rheology measurements. N2 - Im Rahmen dieser Arbeit wurden neue fluorierte und unfluorierte mono- und bifunktionelle Trithiocarbonate der Typen Z-C(=S)-S-R und Z-C(=S)-S-R-S-C(=S)-Z zur Anwendung als CTAs (chain- transfer agents) im RAFT-Polymerisationsverfahren hergestellt. Alle CTAs wurden erfolgreich auf ihre Effizienz zur Steuerung des radikalischen Polymerisationsverfahrens hin durch Polymerisation von Styrol (M3) getestet. Neben GPC-Messungen wurden Endgruppenanalysen der synthetisierten Blockcopolymere mittels 1H-, 19F-NMR und in manchen Fällen auch UV-Vis Spektroskopie durchgeführt. Dazu wurden die Z- und/oder R-Gruppen der CTAs mit geeigneten fluorierten Gruppen versehen. Durch Anwendung des RAFT Verfahrens konnten symmetrische Triblockcopolymere vom Typ BAB bzw. mit einer Fluoralkylgruppe endgecappte unsymmetrische Polymere in nur zwei bzw. einem Polymerisationsschritt hergestellt werden. Das RAFT- Polymerisationsverfahren ermöglicht sowohl die Polymerisation hydrophiler Monomere wie N-Isopropylacrylamid (NIPAM) (M1) oder N-Acryloylpyrrolidin (NAP) (M2) für die A-Blöcke als auch der hydropoben Monomere Styrol (M3), 2-Fluorostyrol (M4), 3-Fluorostyrol (M5), 4- Fluorostyrol (M6) und 2,3,4,5,6- Pentafluorostyrol (M7) für die B-Blöcke. Die Eigenschaften der Blockcopolymere in verdünnten, konzentrierten und hochkonzentrierten wässrigen Lösungen wurden mittels DLS, Trübungsphotometrie, 1H- und 19F-NMR, Rheologie, CMC- sowie Schaumhöhen- und Oberflächenspannungsmessungen und Lichtmikroskopie untersucht. Weiterhin wurden ihre Eigenschaften als Emulgatoren und in Mikroemulsion untersucht. Das Micellbildungsverhalten der hydrophob endfunktionalisierten Polymere wurde mittels DLS Messungen in verdünnter organischer Lösung untersucht. Alle untersuchten BAB-Triblöcke bildeten Micellen und zeigten Oberflächenaktivität bei Raumtemperatur in verdünnter, wässriger Lösung. Weiterhin zeigen die wässrigen Lösungen der Polymere mäßige Schaumbildung. Mit verschiedenen Öltypen und Ölkonzentrationen wurden Emulsionen bzw. Mikroemulsionen gebildet. In Mikroemulsion wurde durch Zugabe von BAB-Triblockopolymeren kein Boosting-Effekt erzielt werden. Bei Untersuchung höherer Polymerkonzentrationen wurde die Bildung von Hydrogelen mittels rheologischer Messungen nachgewiesen. Verschiedene Substrate konnten benetzt werden. Die hydrophob endgecappten Polymere bilden in verdünnter organischer Lösung Micellen, die mittels DLS untersucht wurden, und zeigen somit Tensidverhalten in nichtwässriger Lösung. KW - Fluorierte Blockcopolymere KW - RAFT KW - Rheologie KW - Tenside KW - Gele KW - wässrige Systeme KW - thermisch schaltbare Polymere KW - fluorinated Blockcopolymers KW - RAFT-Polymerisation KW - rheology KW - surfactants KW - gels KW - aqueous systems KW - thermosensitive polymers Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61782 ER - TY - THES A1 - Hentschel, Jens T1 - Synthese und kontrollierte Mikrostrukturbildung funktionaler Peptid-Polymerkonjugate in organischen Lösungsmitteln T1 - Synthesis and controlled microstructure formation of functional peptide-polymer conjugates in organic media N2 - In der vorliegenden Arbeit wurde ein Ansatz verfolgt, die besonderen Eigenschaften der Strukturbildung sequenzdefinierter Peptide mit den vielseitigen Materialeigenschaften synthetischer Blockcopolymere zu kombinieren. Dazu wurde ein synthetisches Polymer kovalent mit einer definierten Peptidsequenz verknüpft. Der Peptidblock (die Organisationseinheit) wurde speziell designt, um später die Strukturbildung des Peptid-Polymerkonjugates induzieren und leiten zu können. Als Organisationsmotiv diente hierbei das aus der Natur bekannte β-Faltblatt Strukturmotiv. Das Peptidsegment wurde in einer festphasengebundenen Synthese aufgebaut. Dabei wurden temporäre Stör-Segmente (Switch-Segmente) in die Peptidsequenz integriert. Diese Segmente unterdrücken die Aggregationstendenz während der Synthese und können durch einen pH-abhängigen Schaltvorgang in das natürliche Peptidrückgrat überführt werden. Zusätzlich zu der verbesserten Ausbeute und Reinheit der entsprechenden Peptide war auf diese Weise eine kontrollierte Aktivierung der Mikrostrukturbildung möglich. Mit Hilfe zwei verschiedener Synthesestrategien (Kupplungs- bzw. Polymerisationsstrategie) wurde ein Satz von definierten Peptid-Polymerkonjugaten mit unterschiedlich großen Polymersegmenten synthetisiert. Diese wurden anschließend im Hinblick auf ihre Strukturbildungseigenschaften in organischen Lösungsmitteln untersucht. Durch mikroskopische Verfahren (AFM, TEM), konnte für alle Konjugate, die Bildung faserartiger Aggregate mit Dimensionen im Nano- bis Mikrometerbereich beobachtet werden. Genauere Untersuchungen zeigten, dass die Peptidsegmente in diesen Faserstrukturen ein β-Faltblatt ausbilden. Dies ist ein deutlicher Hinweis darauf, dass die Strukturbildung der Konjugate tatsächlich durch den Peptidblock gesteuert und kontrolliert wurde. N2 - The aim of this work was to combine the particular structuring properties of sequence-defined peptides with the versatile material properties of synthetic block-copolymers. Therefor, synthetic polymers were linked covalently to a defined oligopeptide-sequence using varying synthetic approaches. The oligopeptide was designed to guide and control the microstructure formation of the peptide-polymer conjugate. For this reason a peptide sequence with a high propensity to adopt the β-sheet motif was chosen. Thus, highly attractive, anisometric tape, fibrillar or fibre-like nanostructures can be accessed. However, such peptide-sequences are very difficult to synthesize and handle, as a result of their strong aggregation tendency. Therefore, temporary structure breaking units, so called switch-segments, were integrated into the peptide sequence, disturbing the peptide backbone and thus, temporarily suppressing the peptide properties. The controlled rearrangement of these defects reestablishes the native peptide backbone, switching the aggregation tendency of the peptide segment on, and triggers the assembly process. A set of defined peptide-polymer conjugates with different polymer block-lengths was synthesized either by an coupling approach or by RAFT polymerization using a switch-peptide macro chain transfer agent. Afterwards, the structure formation properties of these conjugates were investigated. By the use of microscopic techniques (AFM, TEM), the formation of densely twisted tape-like microstructures was observed for all conjugates. The formation of extended β-sheets was confirmed by different techniques (FT-IR, TEM-SAED), indicating a peptide guided microstructure formation process. Thus, it could be demonstrated that the peptide guided organization of synthetic polymers can be successfully transferred into organic solvents. KW - Peptid KW - Polymer KW - Strukturbildung KW - RAFT KW - peptide KW - polymer KW - switch KW - RAFT KW - nanostructure Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-19840 ER - TY - THES A1 - Bivigou Koumba, Achille Mayelle T1 - Design, Synthesis and Characterisation of Amphiphilic Symmetrical triblock copolymers by the RAFT process : their self-organisation in dilute and concentrated aqueous solutions T1 - Design, Synthese und Charakterisierung von amphiphilen symmetrischen Triblock-Copolymeren anhand des RAFT Prozesses : ihre Selbstorganisation in wässrigen verdünnten und höher konzentrierten Lösungen N2 - This work presents the synthesis and the self-assembly of symmetrical amphiphilic ABA and BAB triblock copolymers in dilute, semi-concentrated and highly concentrated aqueous solution. A series of new bifunctional bistrithiocarbonates as RAFT agents was used to synthesise these triblock copolymers, which are characterised by a long hydrophilic middle block and relatively small, but strongly hydrophobic end blocks. As hydrophilic A blocks, poly(N-isopropylacrylamide) (PNIPAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA) were employed, while as hydrophobic B blocks, poly(4-tert-butyl styrene), polystyrene, poly(3,5-dibromo benzyl acrylate), poly(2-ethylhexyl acrylate), and poly(octadecyl acrylate) were explored as building blocks with different hydrophobicities and glass transition temperatures. The five bifunctional trithiocarbonates synthesised belong to two classes: the first are RAFT agents, which position the active group of the growing polymer chain at the outer ends of the polymer (Z-C(=S)-S-R-S-C(=S)-Z, type I). The second class places the active groups in the middle of the growing polymer chain (R-S-C(=S)-Z-C(=S)-S-R, type II). These RAFT agents enable the straightforward synthesis of amphiphilic triblock copolymers in only two steps, allowing to vary the nature of the hydrophobic blocks as well as the length of the hydrophobic and hydrophilic blocks broadly with good molar mass control and narrow polydispersities. Specific side reactions were observed among some RAFT agents including the elimination of ethylenetrithiocarbonate in the early stage of the polymerisation of styrene mediated by certain agents of the type II, while the use of the RAFT agents of type I resulted in retardation of the chain extension of PNIPAM with styrene. These results underline the need of a careful choice of RAFT agents for a given task. The various copolymers self-assemble in dilute and semi-concentrated aqueous solution into small flower-like micelles. No indication for the formation of micellar clusters was found, while only at high concentration, physical hydrogels are formed. The reversible thermoresponsive behaviour of the ABA and BAB type copolymer solutions in water with A made of PNIPAM was examined by turbidimetry and dynamic light scattering (DLS). The cloud point of the copolymers was nearly identical to the cloud point of the homopolymer and varied between 28-32 °C with concentrations from 0.01 to 50 wt%. This is attributed to the formation of micelles where the hydrophobic blocks are shielded from a direct contact with water, so that the hydrophobic interactions of the copolymers are nearly the same as for pure PNIPAM. Dynamic light scattering measurements showed the presence of small micelles at ambient temperature. The aggregate size dramatically increased above the cloud point, indicating a change of aggregate morphology into clusters due to the thermosensitivity of the PNIPAM block. The rheological behaviour of the amphiphilic BAB triblock copolymers demonstrated the formation of hydrogels at high concentrations, typically above 30-35 wt%. The minimum concentration to induce hydrogels decreased with the increasing glass transition temperatures and increasing length of the end blocks. The weak tendency to form hydrogels was attributed to a small share of bridged micelles only, due to the strong segregation regime occurring. In order to learn about the role of the nature of the thermoresponsive block for the aggregation, a new BAB triblock copolymer consisting of short polystyrene end blocks and PMDEGA as stimuli-responsive middle block was prepared and investigated. Contrary to PNIPAM, dilute aqueous solutions of PMDEGA and of its block copolymers showed reversible phase transition temperatures characterised by a strong dependence on the polymer composition. Moreover, the PMDEGA block copolymer allowed the formation of physical hydrogels at lower concentration, i.e. from 20 wt%. This result suggests that PMDEGA has a higher degree of water-swellability than PNIPAM. N2 - Die Arbeit behandelt die Synthese und das Selbstorganisationsverhalten von neuen funktionellen symmetrischen "stimuli-responsiven" Triblockcopolymeren ABA und BAB in wässrigen verdünnten und höher konzentrierten Lösungen. Neue symmetrische, bifunktionelle Bistrithiocarbonate wurden als RAFT-Agentien benutzt, um Triblockcopolymere mit langen hydrophilen (A) Innen- und kurzen hydrophoben (B) Außenblöcken zu synthetisieren. Als hydrophile A Blöcke wurden Poly(N-isopropylacrylamid) PNIPAM und Poly(methoxy diethylene glykol acrylat) PMDEGA benutzt, während als hydrophobe Blöcke B Poly(4-tert-butyl styrol), Polystyrol, Poly(3,5-dibromo benzyl acrylat), Poly(2-ethylhexyl acrylat), und Poly(octadecyl acrylat) als Bausteine mit unterschiedlicher Glasübergangstemperatur untersucht wurden. Die Selbstorganisation von ABA und BAB Copolymeren in Wasser mit A Blöcken aus PNIPAM wurde anhand von Trübungsphotometrie, dynamischer Lichtstreuung (DLS) und Rheologie untersucht. Die amphiphilen Blockcopolymere sind direkt wasserlöslich. Bei Konzentrationen von 0.01 bis 50 wt% zeigen Trübungsmessungen bei den Blockcopolymeren wie bei den Homopolymeren eine Übergangstemperatur bei 28-32 °C. Zurückzuführen ist dies auf die Bildung von Mizellen, bei der die hydrophoben Blöcke von einem direkten Kontakt mit Wasser abgeschirmt werden. DLS zeigt kleine Mizellen bei niedrigen Temperaturen und Aggregate mit großem hydrodynamischem Durchmesser bei Temperaturen oberhalb der Übergangstemperatur. Die rheologische Untersuchung von BAB Polymeren zeigt die Bildung von Hydrogelen bei höheren Konzentrationen (über 30-35 wt%). Die minimal benötigte Konzentration, bei der die von Hydrogelen auftreten, nimmt mit wachsender Glasübergangstemperatur ab, und nimmt mit der Länge der hydrophoben Blöcke B zu. Im Unterschied zu PNIPAM zeigen wässrige Lösungen von PMDEGA und seinen Blockcopolymeren reversible Übergangstemperaturen abhängig von der chemischen Struktur. Außerdem bilden PMDEGA Blockcopolymere Hydrogele bei niedriger Konzentration (ab 20 wt%). Dieses Ergebnis deutet darauf hin, dass PMDEGA stärker Wasser bindet als PNIPAM. KW - Design KW - Synthese KW - Charakterisierung KW - Triblock-Copolymere KW - RAFT KW - Design KW - Synthesis KW - Characterisation KW - Triblock Copolymers KW - RAFT Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-39549 ER -