TY - THES A1 - Otto, Katharina Alexandra T1 - Mass wasting and the Coriolis effect on asteroid Vesta T1 - Massenbewegungen und der Corioliseffekt auf dem Asteroiden Vesta N2 - This work investigates the influence of the Coriolis force on mass motion related to the Rheasilvia impact basin on asteroid (4) Vesta's southern hemisphere. The giant basin is 500km in diameter, with a centre which nearly coincides with the rotation axis of Vesta. The Rheasilvia basin partially overlaps an earlier, similarly large impact basin, Veneneia. Mass motion within and in the vicinity of the Rheasilvia basin includes slumping and landslides, which, primarily due to their small linear extents, have not been noticeably affected by the Coriolis force. However, a series of ridges related to the basin exhibit significant curvature, which may record the effect of the Coriolis force on the mass motion which generated them. In this thesis 32 of these curved ridges, in three geologically distinct regions, were examined. The mass motion velocities from which the ridge curvatures may have resulted during the crater modification stage were investigated. Velocity profiles were derived by fitting inertial circles along the curved ridges and considering both the current and past rotation states of Vesta. An iterative, statistical approach was used, whereby the radii of inertial circles were obtained through repeated fitting to triplets of points across the ridges. The most frequently found radius for each central point was then used for velocity derivation at that point. The results of the velocity analysis are strongly supportive of a Coriolis force origin for the curved ridges. Derived velocities (29.6 ± 24.6 m/s) generally agree well with previously published predictions from numerical simulations of mass motion during the impact process. Topographical features such as local slope gradient and mass deposition regions on the curved ridges also independently agree with regions in which the calculated mass motion accelerates or decelerates. Sections of constant acceleration, deceleration and constant velocity are found, showing that mass motion is being governed by varying conditions of topography, regolith structure and friction. Estimates of material properties such as the effective viscosities (1.9-9.0·10⁶ Pa·s) and coefficients of friction (0.02-0.81) are derived from the velocity profile information in these sections. From measured accelerations of mass motions on the crater wall, it is also shown that the crater walls must have been locally steeper at the time of the mass motion. Together with these novel insights into the state and behaviour of material moving during the modification stage of Rheasilvia's formation, this work represents the first time that the Coriolis Effect on mass motions during crater formation has been shown to result in diagnostic features preserved until today. N2 - In dieser Arbeit wurden Massenbewegungen im Rheasilvia-Einschlagsbecken der Südhemisphäre des Asteroiden (4) Vesta untersucht. Die Besonderheiten des Beckens sind seine Größe von 500km Durchmesser, die Lage des Zentrums, welche nahezu mit der Rotationsachse Vestas übereinstimmt und die Überlagerung mit dem ähnlich großen Einschlagsbecken Venenia. Die meisten Massenbewegungen, wie Hangrutschungen oder Lawinen, sind aufgrund ihrer relativ kleinen Bewegungsdistanzen nicht sichtbar von der Corioliskraft beeinflusst worden. Jedoch weist die Krümmung von einigen radialen Bergrücken darauf hin, dass diese durch Massenbewegungen im Modifikationsprozess des Rheasilvia-Einschlags entstanden sein könnten. Danach wurden sie durch die Corioliskraft während der Bewegung in Richtung Kraterboden abgelenkt. In dieser Arbeit wurden 32 gekrümmte Bergrücken untersucht, um herauszufinden, ob diese durch die Corioliskraft beeinflusst wurden. Dazu wurden mehrere Inertialkreise an die gekrümmten Bergrücken angepasst und mit Hilfe der Kenntnisse über Form und Rotation von Vesta Geschwindigkeitsprofile der Massenbewegungen erstellt. Zur Bestimmung der Geschwindigkeit an einem Punkt wurde eine interaktive und statistische Methode entwickelt, die automatisiert an jeden Punkt auf dem gekrümmten Bergrücken mehrere Interialkreise anpasste. Der am häufigsten vorkommende Intertialradius eines Punktes wurde folglich benutzt um die Geschwindigkeit an diesem Punkt zu bestimmen. Das Ergebnis der Geschwindigkeitsanalyse bekräftigt die Corioliskraft als Ursache für die Krümmung der Bergrücken. Die Geschwindigkeiten (29.6 ± 24.6 m/s) stimmen nicht nur mit zuvor numerisch simulierten Geschwindigkeiten des Rheasilvia-Beckens überein, sondern topographische Eigenschaften, wie die Hangneigung und Massenablagerungen, sind ebenfalls mit den resultierenden Beschleunigungen und Verlangsamungen im Einklang. Abschnitte mit konstanter Beschleunigung, Verlangsamung und Geschwindigkeit zeigen, dass die Massenbewegungen in heterogenem Regolith mit unterschiedlicher Topographie und Reibung stattgefunden haben müssen. Außerdem konnten Materialeigenschaften wie die effektive Viskosität (1.9-9.0·10⁶ Pa·s) und der effektive Reibungskoeffizient (0.02-0.81) des Materials abgeschätzt werden. Die gemessenen Beschleunigungen an der Kraterwand weisen darauf hin, dass der Hangwinkel zur Zeit der Massenbewegungen steiler gewesen sein muss als gegenwärtig beobachtet werden kann. Diese Arbeit lieferte neue Einsichten in das Verhalten von Material während des Rheasilvia-Einschlags. Zum ersten Mal konnte so gezeigt werden, dass der Coriolis-Effekt einen Einfluss auf die Massenbewegungen während eines Einschlagsprozesses haben kann und dass die erzeugten Krümmungen bis heute beobachtbar sind. KW - Coriolis effect KW - Vesta KW - mass wasting KW - asteroids KW - Dawn mission KW - impact cratering KW - impact simulation KW - modification stage KW - material properties KW - mass-wasting velocities KW - viscosity KW - coefficient of friction KW - acoustic fluidization KW - Rheasilvia KW - Veneneia KW - curved radial ridges KW - Coriolis Effekt KW - Vesta KW - Massenbewegungen KW - Asteroiden KW - Dawn-Mission KW - Einschlagskrater KW - Einschlagssimulation KW - Modifikationsphase KW - Materialeigenschaften KW - Massenbewegungsgeschwindigkeiten KW - Viskosität KW - Reibungskoeffizient KW - akustische Fluidisierung KW - Rheasilvia KW - Veneneia KW - gekrümmte radiale Bergrücken Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87390 ER - TY - THES A1 - Obu, Jaroslav T1 - Effect of mass wasting on soil organic carbon storage and coastal erosion in permafrost environments T1 - Einfluss von Hangbewegungen auf Kohlenstoffspeicher und Küstenerosion in Permafrostgebieten N2 - Accelerated permafrost thaw under the warming Arctic climate can have a significant impact on Arctic landscapes. Areas underlain by permafrost store high amounts of soil organic carbon (SOC). Permafrost disturbances may contribute to increased release of carbon dioxide and methane to the atmosphere. Coastal erosion, amplified through a decrease in Arctic sea-ice extent, may also mobilise SOC from permafrost. Large expanses of permafrost affected land are characterised by intense mass-wasting processes such as solifluction, active-layer detachments and retrogressive thaw slumping. Our aim is to assess the influence of mass wasting on SOC storage and coastal erosion. We studied SOC storage on Herschel Island by analysing active-layer and permafrost samples, and compared non-disturbed sites to those characterised by mass wasting. Mass-wasting sites showed decreased SOC storage and material compaction, whereas sites characterised by material accumulation showed increased storage. The SOC storage on Herschel Island is also significantly correlated to catenary position and other slope characteristics. We estimated SOC storage on Herschel Island to be 34.8 kg C m-2. This is comparable to similar environments in northwest Canada and Alaska. Coastal erosion was analysed using high resolution digital elevation models (DEMs). Two LIDAR scanning of the Yukon Coast were done in 2012 and 2013. Two DEMs with 1 m horizontal resolution were generated and used to analyse elevation changes along the coast. The results indicate considerable spatial variability in short-term coastline erosion and progradation. The high variability was related to the presence of mass-wasting processes. Erosion and deposition extremes were recorded where the retrogressive thaw slump (RTS) activity was most pronounced. Released sediment can be transported by longshore drift and affects not only the coastal processes in situ but also along adjacent coasts. We also calculated volumetric coastal erosion for Herschel Island by comparing a stereo-photogrammetrically derived DEM from 2004 with LIDAR DEMs. We compared this volumetric erosion to planimetric erosion, which was based on coastlines digitised from satellite imagery. We found a complex relationship between planimetric and volumetric coastal erosion, which we attribute to frequent occurrence of mass-wasting processes along the coasts. Our results suggest that volumetric erosion corresponds better with environmental forcing and is more suitable for the estimation of organic carbon fluxes than planimetric erosion. Mass wasting can decrease SOC storage by several mechanisms. Increased aeration following disturbance may increase microbial activity, which accelerates organic matter decomposition. New hydrological conditions that follow the mass wasting event can cause leaching of freshly exposed material. Organic rich material can also be directly removed into the sea or into a lake. On the other hand the accumulation of mobilised material can result in increased SOC storage. Mass-wasting related accumulations of mobilised material can significantly impact coastal erosion in situ or along the adjacent coast by longshore drift. Therefore, the coastline movement observations cannot completely resolve the actual sediment loss due to these temporary accumulations. The predicted increase of mass-wasting activity in the course of Arctic warming may increase SOC mobilisation and coastal erosion induced carbon fluxes. N2 - Die Erwärmung des arktischen Klimas beschleunigt das Tauen des Permafrosts. Das kann einen erheblichen Einfluss auf arktische Landschaften haben. Permafrostböden speichern große Mengen Kohlenstoff, der aufgrund von Umlagerungsprozessen wie beispielsweise Massenversatz mobilisiert und als Kohlendioxid oder Methan freigesetzt werden kann. Der Kohlenstoff im Boden kann auch durch Küstenerosion mobilisiert werden, die durch den Rückgang des arktischen Meereises und höhere Meerwassertemperaturen künftig stark zunehmen wird. Große Teile der arktischen Permafrostgebiete werden durch intensive Massenversatzprozesse wie Solifluktion, Rutschungen in der saisonalen Auftauschicht (active layer detachments) und rückschreitende Taurutschungen (retrogressive thaw slumps) gekennzeichnet. Unser Ziel ist es, den Einfluss dieser Massenbewegungen auf Kohlenstoffspeicher und Küstenerosion zu bewerten. Wir haben Auftauschicht- und Permafrostproben untersucht, um den Kohlenstoffspeicher für Herschel Island zu ermitteln. Wir verglichen ungestörtes Terrain mit durch Massenversatz gekennzeichnetem Terrain. Letzteres zeigte verringerte Bodenkohlenstoffspeicher und Materialverdichtung. Durch Akkumulation organischen Materials gekennzeichnete Lagen zeigten eine Zunahme des Kohlenstoffpeichers. Der Bodenkohlenstoffspeicher auf Herschel Insel korreliert außerdem deutlich mit der Lage in Senken und der Hangneigung. Der Kohlenstoffspeicher im Boden von Herschel Island ist etwa so hoch wie in vergleichbaren Landschaften im Nordwesten Kanadas und Alaskas. Wir schätzen ihn auf 34,8 kg C m-2. Wir ermittelten Küstenerosionsraten mit hochauflösenden Digitalen Geländemodellen (DGM). Dazu benutzten wir zwei LIDAR Aufnahmen der Yukon Küste aus den Jahren 2012 und 2013. Zwei DGMs mit 1 m horizontaler Auflösung wurden erzeugt und verwendet, um die Höhenunterschiede entlang der Küste zu analysieren. Wir fanden eine erhebliche räumliche Variabilität in kurzfristigen Küstenerosionsraten. Wir erklärten die hohe Variabilität mit der räumlichen Heterogenität des Vorkommens von Massenversatzprozessen. Besonders die sogenannten retrogressive thaw slumps bewirkten extrem hohe Erosionsraten an einigen Küstenabschnitten. Durch Strandversetzung wird erodiertes Sediment die Küste entlang transportiert und beeinflusst so nicht nur lokale Küstenprozesse, sondern auch benachbarte Küstenabschnitte. Um die längerfristige Entwicklung der Küste einschätzen zu können, haben wir volumetrische Erosionsraten aus dem Vergleich eines stereophotogrammetrisch abgeleiteten DGM aus dem Jahr 2004 mit unseren LIDAR DGMs errechnet. Planimetrische Erosionsraten wurden anhand von digitalisierten Küstenlinien aus Satellitenbildern berechnet. So konnte auch der Einfluss von volumetrischer und planimetrischer Erosion eingeschätzt werden. Wir fanden komplexe Zusammenhänge zwischen planimetrischer und volumetrischer Küstenerosion, die wir auf das gehäufte Auftreten von Massenversatzprozessen entlang einiger Küstenabschnitte zurückführen. Die Ergebnisse legen nahe, dass volumetrische Erosionsraten den beobachteten Umweltbedingungen besser entsprechen als planimetrische Erosionsraten und somit besser geeignet sind zur Einschätzung organischer Kohlenstoffflüsse in Permafrostgebieten entlang der arktischen Küsten. Massenversatz kann den Kohlenstoffspeicher im Boden mit verschiedenen Mechanismen verringern. Erhöhte Belüftung kann die mikrobielle Aktivität erhöhen, die den Abbau organischer Materie beschleunigt. Durch veränderte hydrologische Bedingungen nach Massenversatz können Stoffe aus der Auftauschicht ausgewaschen werden. Organikreiche Stoffe können auch direkt ins einem Meer in einen See erodiert werden. Andererseits kann die Akkumulation von umgelagertem Material zu einer Erhöhung des Bodenkohlenstoffspeichers an anderer Stelle führen. Die Akkumulation von Material aus Massenversatz kann erhebliche Auswirkungen auf die lokale Küstenerosion, durch Strandversetzung aber auch auf angrenzende Küstenabschnitte haben. Allein durch Beobachtung der Veränderung von Küstenlinien kann aufgrund solcher temporärer Ansammlungen die Einschätzung des tatsächlichen Sedimentverlustes pro Küstenabschnitt nicht präzise wiedergegeben werden. Im Zuge der prognostizierten Erwärmung der Arktis und der damit verbundene Zunahme von Massenversatzprozessen und Küstenerosion wird sich die Mobilisierung von Bodenkohlenstoff aus Permafrost zukünftig beschleunigen. KW - mass wasting KW - soil organic carbon KW - coastal erosion KW - Massenversatzprozesse KW - Kohlenstoffspeicher KW - Küstenerosion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90599 ER -