TY - GEN A1 - Güntner, Andreas A1 - Reich, Marvin A1 - Mikolaj, Michal A1 - Creutzfeldt, Benjamin A1 - Schroeder, Stephan A1 - Wziontek, Hartmut T1 - Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85% of the gravity signal due to local water storage changes originating within a radius of 4000 and 200m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 663 KW - gravity measurements KW - local hydrology KW - storage changes KW - noise-levels KW - time KW - system KW - attraction KW - athmosphere KW - surface Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419105 SN - 1866-8372 IS - 663 ER - TY - GEN A1 - Loritz, Ralf A1 - Hassler, Sibylle K. A1 - Jackisch, Conrad A1 - Allroggen, Niklas A1 - van Schaik, Loes A1 - Wienhöfer, Jan A1 - Zehe, Erwin T1 - Picturing and modeling catchments by representative hillslopes T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall-runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 635 KW - soil-moisture dynamics KW - hydrologic-response simulation KW - rainfall-runoff response KW - preferential flow KW - subsurface stormflow KW - water-uptake KW - field-scale KW - transport KW - system KW - basin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419082 IS - 635 SP - 1225 EP - 1249 ER -