TY - JOUR A1 - Hermanussen, Michael A1 - Erofeev, Sergei A1 - Scheffler, Christiane T1 - The socio-endocrine regulation of human growth JF - Acta paediatrica : nurturing the child N2 - Aim Growth is a multifarious phenomenon that has been studied by nutritionists, economists, paediatric endocrinologists; archaeologists, child psychologists and other experts. Yet, a unifying theory of understanding growth regulation is still lacking. Method Critical review of the literature. Results We summarise evidence linking social competition and its effect on hierarchies in social structures, with the neuronal networks of the ventromedial hypothalamus and body size. The endocrine signalling system regulating growth hormone, Insulin-like-Growth-Factor1 and skeletal growth, is well conserved in the evolution of vertebrata for some 400 million years. The link between size and status permits adaptive plasticity, competitive growth and strategic growth adjustments also in humans. Humans perceive size as a signal of dominance with tallness being favoured and particularly prevalent in the upper social classes. Conclusion Westernised societies are competitive. People are tall, and "open to change." Social values include striving for status and prestige implying socio-economic domination. We consider the transition of political and social values following revolutions and civil wars, as key elements that interact with the evolutionarily conserved neuroendocrine competence for adaptive developmental plasticity, overstimulate the hypothalamic growth regulation and finally lead to the recent historic increases in average height. KW - competitive growth KW - developmental plasticity KW - evolution KW - growth KW - hormone-releasing hormone KW - strategic growth adjustments Y1 - 2022 U6 - https://doi.org/10.1111/apa.16504 SN - 0803-5253 SN - 1651-2227 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ilić Petković, Nikoleta A1 - Poppenhäger, Katja A1 - Hosseini, Seyede Marzieh T1 - Tidal star-planet interaction and its observed impact on stellar activity in planet-hosting wide binary systems JF - Monthly notices of the Royal Astronomical Society N2 - Tidal interaction between an exoplanet and its host star is a possible pathway to transfer angular momentum between the planetary orbit and the stellar spin. In cases where the planetary orbital period is shorter than the stellar rotation period, this may lead to angular momentum being transferred into the star's rotation, possibly counteracting the intrinsic stellar spin-down induced by magnetic braking. Observationally, detecting altered rotational states of single, cool field stars is challenging, as precise ages for such stars are rarely available. Here we present an empirical investigation of the rotation and magnetic activity of a sample of planet-hosting stars that are accompanied by wide stellar companions. Without needing knowledge about the absolute ages of the stars, we test for relative differences in activity and rotation of the planet hosts and their co-eval companions, using X-ray observations to measure the stellar activity levels. Employing three different tidal interaction models, we find that host stars with planets that are expected to tidally interact display elevated activity levels compared to their companion stars. We also find that those activity levels agree with the observed rotational periods for the host stars along the usual rotation-activity relationships, implying that the effect is indeed caused by a tidal interaction and not a purely magnetic interaction that would be expected to affect the stellar activity, but not necessarily the rotation. We conclude that massive, close-in planets have an impact on the stellar rotational evolution, while the smaller, more distant planets do not have a significant influence. KW - planet-star interactions KW - stars: activity KW - binaries: general KW - stars: KW - evolution KW - planets and satellites: general KW - X-rays: stars Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac861 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 3 SP - 4380 EP - 4404 PB - Oxford Univ. Press CY - Oxford ER -