TY - JOUR A1 - Alter, Markus L. A1 - Kretschmer, Axel A1 - Von Websky, Karoline A1 - Tsuprykov, Oleg A1 - Reichetzeder, Christoph A1 - Simon, Alexandra A1 - Stasch, Johannes-Peter A1 - Hocher, Berthold T1 - Early urinary and plasma biomarkers for experimental diabetic Nephropathy JF - Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion N2 - Background: As the prevalence of diabetes rises, its complications such as diabetic nephropathy affect an increaseing number of patients. Consequently, the need for biomarkers in rodent models which reflect the stage and course of diabetic nephropathy is high. This article focuses on Heart-type fatty acid binding protein (H-FABP), osteopontin (OPN), nephrin, and Neutrophil gelatinase-associated lipocalin (NGAL) in urine, and kidney injury molecule (KIM)-1, clusterin, and tissue inhibitior of metalloproteinases (TIMP) 1 in plasma in uni-nephrectomized rats with streptocotozin-induced type 1 diabetes mellitus, a common animal model to explore renal impairment in the setting of diabetes mellitus. Methods: 23 male Wistar rats were uni-nephrectomized and subsequently divided into two study groups. The diabetic group received streptozotocin (STZ) via tail-vein injection, the non-diabetic group received citrate buffer without STZ. Subsequently, blood glucose, body weight, and blood pressure were checked regularly. After 18 weeks, animals were placed in metabolic cages, blood and urine obtained and subsequently organs were harvested after sacrifice. Results: Blood glucose levels were highly increased in diabetic animals throughout the experiment, whereas systolic blood pressure did not differ between the study groups. At study end, classical biomarkers such as urinary albumin and protein and plasma cystatin c were only slightly but not significantly different between groups indicating a very early disease state. In contrast, urinary excretion of H-FABP, OPN, nephrin, and NGAL were highly increased in diabetic animals with a highly significant p-value (p<0.01 each) compared to non-diabetic animals. In plasma, differences were found for calbindin, KIM-1, clusterin, TIMP-1, and OPN. These findings were confirmed by means of the area under the receiver operating characteristic curve (ROC-AUC) analysis. Conclusions: In summary, our study revealed elevated levels of new plasma and urinary biomarkers (urinary osteopontin, urinary nephrin, urinary NGAL, urinary H-FABP, plasma KIM-1, plasma TIMP-1) in uni-nephrectomized diabetic rats, an established rat model of diabetic nephropathy. These biomarkers appeared even before the classical biomarkers of diabetic nephropathy such as albuminuria and urinary protein excretion. The new biomarkers might offer advantage to urinary albumin and plasma cystatin c with respect to early detection. KW - diabetic nephropathy KW - urinary biomarker KW - blood biomarker KW - heart-type fatty acid binding protein KW - osteopontin KW - nephrin KW - neutrophil gelatinase-associated lipocalin KW - kidney injury molecule 1 KW - clusterin KW - tissue inhibitior of metalloproteinases 1 Y1 - 2012 U6 - https://doi.org/10.7754/Clin.Lab.2011.111010 SN - 1433-6510 VL - 58 IS - 7-8 SP - 659 EP - 671 PB - Clin Lab Publ., Verl. Klinisches Labor CY - Heidelberg ER - TY - GEN A1 - Alter, Markus L. A1 - Ott, Ina A1 - von Websky, Karoline A1 - Tsuprykov, Oleg A1 - Sharkovska, Yuliya A1 - Krause-Relle, Katharina A1 - Raila, Jens A1 - Henze, Andrea A1 - Kretschmer, Axel A1 - Stasch, Johannes-Peter A1 - Hocher, Berthold T1 - Additional stimulation of sGC on top of standard treatment with ARB`s may offer a new therapeutic approach for the treatment of diabetic nephropathy resistant to ARB treatment alone T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Riociguat is the first of a new class of drugs, the soluble guanylate cyclase (sGC) stimulators. Riociguat has a dual mode of action: it sensitizes sGC to the body’s own NO and can also increase sGC activity in the absence of NO. The NO-sGC-pathway is impaired in many cardiovascular diseases such as heart failure, pulmonary hypertension and diabetic nephropathy (DN). DN leads to high cardiovascular morbidity and mortality. There is still a high unmet medical need. The urinary albumin excretion rate is a predictive biomarker for these clinical events. Therefore, we investigated the effect of riociguat, alone and in combination with the angiotensin II receptor antagonist (ARB) telmisartan on the progression of DN in diabetic eNOS knock out mice, a new model closely resembling human pathology. Methods Seventy-six male eNOS knockout C57BL/6J mice were divided into 4 groups after receiving intraperitoneal high-dose streptozotocin: telmisartan (1 mg/kg), riociguat (3 mg/kg), riociguat+telmisartan (3 and 1 mg/kg), and vehicle. Fourteen mice were used as non-diabetic controls. After 12 weeks, urine and blood were obtained and blood pressure measured. Glucose concentrations were highly increased and similar in all diabetic groups. Results Riociguat, alone (105.2 ± 2.5 mmHg; mean±SEM; n = 14) and in combination with telmisartan (105.0 ± 3.2 mmHg; n = 12), significantly reduced blood pressure versus diabetic controls (117.1 ± 2.2 mmHg; n = 14; p = 0.002 and p = 0.004, respectively), whereas telmisartan alone (111.2 ± 2.6 mmHg) showed a modest blood pressure lowering trend (p = 0.071; n = 14). The effects of single treatment with either riociguat (97.1 ± 15.7 µg/d; n = 13) or telmisartan (97.8 ± 26.4 µg/d; n = 14) did not significantly lower albumin excretion on its own (p = 0.067 and p = 0.101, respectively). However, the combined treatment led to significantly lower urinary albumin excretion (47.3 ± 9.6 µg/d; n = 12) compared to diabetic controls (170.8 ± 34.2 µg/d; n = 13; p = 0.004), and reached levels similar to non-diabetic controls (31.4 ± 10.1 µg/d, n = 12). Conclusion Riociguat significantly reduced urinary albumin excretion in diabetic eNOS knock out mice that were refractory to treatment with ARB’s alone. Patients with diabetic nephropathy refractory to treatment with ARB’s have the worst prognosis among all patients with diabetic nephropathy. Our data indicate that additional stimulation of sGC on top of standard treatment with ARB`s may offer a new therapeutic approach for patients with diabetic nephropathy resistant to ARB treatment. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 855 KW - pulmonary hypertension KW - diabetic nephropathy KW - diabetic control KW - telmisartan KW - guanylate cyclase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428250 SN - 1866-8372 IS - 855 ER - TY - JOUR A1 - Groop, Per-Henrik A1 - Cooper, Mark E. A1 - Perkovic, Vlado A1 - Hocher, Berthold A1 - Kanasaki, Keizo A1 - Haneda, Masakazu A1 - Schernthaner, Guntram A1 - Sharma, Kumar A1 - Stanton, Robert C. A1 - Toto, Robert A1 - Cescutti, Jessica A1 - Gordat, Maud A1 - Meinicke, Thomas A1 - Koitka-Weber, Audrey A1 - Thiemann, Sandra A1 - von Eynatten, Maximilian T1 - Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction BT - the randomized MARLINA-T2D trial JF - Diabetes obesity & metabolism : a journal of pharmacology and therapeutics N2 - Aims: The MARLINA-T2D study (ClinicalTrials. gov, NCT01792518) was designed to investigate the glycaemic and renal effects of linagliptin added to standard-of-care in individuals with type 2 diabetes and albuminuria. Methods: A total of 360 individuals with type 2 diabetes, HbA1c 6.5% to 10.0% (48-86 mmol/ mol), estimated glomerular filtration rate (eGFR) >= 30 mL/min/1.73 m(2) and urinary albumin-tocreatinine ratio (UACR) 30-3000 mg/g despite single agent renin-angiotensin-system blockade were randomized to double-blind linagliptin (n = 182) or placebo (n = 178) for 24 weeks. The primary and key secondary endpoints were change from baseline in HbA1c at week 24 and time-weighted average of percentage change from baseline in UACR over 24 weeks, respectively. Results: Baseline mean HbA1c and geometric mean (gMean) UACR were 7.8% +/- 0.9% (62.2 +/- 9.6 mmol/mol) and 126 mg/g, respectively; 73.7% and 20.3% of participants had microalbuminuria or macroalbuminuria, respectively. After 24 weeks, the placebo-adjusted mean change in HbA1c from baseline was -0.60% (-6.6 mmol/mol) (95% confidence interval [CI], -0.78 to -0.43 [-8.5 to -4.7 mmol/mol]; P <.0001). The placebo-adjusted gMean for time-weighted average of percentage change in UACR from baseline was -6.0% (95% CI, -15.0 to 3.0; P =.1954). The adverse-event profile, including renal safety and change in eGFR, was similar between the linagliptin and placebo groups. Conclusions: In individuals at early stages of diabetic kidney disease, linagliptin significantly improved glycaemic control but did not significantly lower albuminuria. There was no significant change in placebo-adjusted eGFR. Detection of clinically relevant renal effects of linagliptin may require longer treatment, as its main experimental effects in animal studies have been to reduce interstitial fibrosis rather than alter glomerular haemodynamics. KW - antidiabetic drug KW - clinical trial KW - diabetic nephropathy KW - DPP-IV inhibitor KW - glycaemic control KW - linagliptin Y1 - 2017 U6 - https://doi.org/10.1111/dom.13041 SN - 1462-8902 SN - 1463-1326 VL - 19 IS - 11 SP - 1610 EP - 1619 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hasan, Ahmed Abdallah Abdalrahman Mohamed A1 - Hocher, Berthold T1 - Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy JF - Journal of Molecular Endocrinology N2 - Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membranebound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure-and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations. KW - DPP-4 KW - diabetic nephropathy KW - DPP-4 inhibitors KW - GLP-1 and SDF-1a Y1 - 2017 U6 - https://doi.org/10.1530/JME-17-0005 SN - 0952-5041 SN - 1479-6813 VL - 59 SP - R1 EP - R10 PB - Bioscientifica LTD CY - Bristol ER - TY - JOUR A1 - Sharkovska, Yuliya A1 - Reichetzeder, Christoph A1 - Alter, Markus L. A1 - Tsuprykov, Oleg A1 - Bachmann, Sebastian A1 - Secher, Thomas A1 - Klein, Thomas A1 - Hocher, Berthold T1 - Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy JF - Journal of hypertension N2 - Background: Despite the beneficial effects of type 4 dipeptidyl peptidase (DPP-4) inhibitors on glucose levels, its effects on diabetic nephropathy remain unclear. Method: This study examined the long-term renoprotective effects of DPP-4 inhibitor linagliptin in db/db mice, a model of type 2 diabetes. Results were compared with the known beneficial effects of renin-angiotensin system blockade by enalapril. Ten-week-old male diabetic db/db mice were treated for 3 months with either vehicle (n = 10), 3 mg linagliptin/kg per day (n = 8), or 20 mg enalapril/kg per day (n = 10). Heterozygous db/m mice treated with vehicle served as healthy controls (n = 8). Results: Neither linagliptin nor enalapril had significant effects on the parameters of glucose metabolism or blood pressure in diabetic db/db mice. However, linagliptin treatment reduced albuminuria and attenuated kidney injury. In addition, expression of podocyte marker podocalyxin was normalized. We also analysed DPP-4 expression by immunofluorescence in human kidney biopsies and detected upregulation of DPP-4 in the glomeruli of patients with diabetic nephropathy, suggesting that our findings might be of relevance for human kidney disease as well. Conclusion: Treatment with DPP-4 inhibitor linagliptin delays the progression of diabetic nephropathy damage in a glucose-independent and blood-pressure-independent manner. The observed effects may be because of the attenuation of podocyte injury and inhibition of myofibroblast transformation. KW - diabetic nephropathy KW - DPP-4 inhibitors KW - linagliptin Y1 - 2014 U6 - https://doi.org/10.1097/HJH.0000000000000328 SN - 0263-6352 SN - 1473-5598 VL - 32 IS - 11 SP - 2211 EP - 2223 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - von Websky, Karoline A1 - Reichetzeder, Christoph A1 - Hocher, Berthold T1 - Physiology and pathophysiology of incretins in the kidney JF - Current opinion in nephrology and hypertension : reviews of all advances, evaluations of key references, comprehensive listing of papers N2 - Purpose of reviewIncretin-based therapy with glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors is considered a promising therapeutic option for type 2 diabetes mellitus. Cumulative evidence, mainly from preclinical animal studies, reveals that incretin-based therapies also may elicit beneficial effects on kidney function. This review gives an overview of the physiology, pathophysiology, and pharmacology of the renal incretin system.Recent findingsActivation of GLP-1R in the kidney leads to diuretic and natriuretic effects, possibly through direct actions on renal tubular cells and sodium transporters. Moreover, there is evidence that incretin-based therapy reduces albuminuria, glomerulosclerosis, oxidative stress, and fibrosis in the kidney, partially through GLP-1R-independent pathways. Molecular mechanisms by which incretins exert their renal effects are understood incompletely, thus further studies are needed.SummaryThe GLP-1R and DPP-4 are expressed in the kidney in various species. The kidney plays an important role in the excretion of incretin metabolites and most GLP-1R agonists and DPP-4 inhibitors, thus special attention is required when applying incretin-based therapy in renal impairment. Preclinical observations suggest direct renoprotective effects of incretin-based therapies in the setting of hypertension and other disorders of sodium retention, as well as in diabetic and nondiabetic nephropathy. Clinical studies are needed in order to confirm translational relevance from preclinical findings for treatment options of renal diseases. KW - DDP-4 inhibition KW - diabetes KW - diabetic nephropathy KW - GLP-1 receptor KW - hypertension KW - incretins KW - kidney KW - renal impairment Y1 - 2014 U6 - https://doi.org/10.1097/01.mnh.0000437542.77175.a0 SN - 1062-4821 SN - 1473-6543 VL - 23 IS - 1 SP - 54 EP - 60 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -