TY - THES A1 - Novakovic, Lazar T1 - Investigating DEFECTIVE KERNEL 1 regulation of primary cell wall biosynthesis and mechanical properties during plant growth in Arabidopsis thaliana N2 - Plants possess cell wall, a polysaccharide exoskeleton which encompasses all plant cells. Cell wall gives plant cells mechanical support, defines their shape, enables growth and water transport through a plant. It also has important role in communication with the external environment. Regulation of plant cell wall biosynthesis and cell and organ morphogenesis depends on cell’s ability to detect mechanical signals originating both from the external environment and from internal plant tissues. Thanks to the presence of the cell wall, all living plant cells develop constant internal pressure generated by the active water uptake, known as turgor pressure, which enables them to grow. Thus, actively growing cells in the tissue are exerting mechanical stress to each other. In order to properly coordinate cell growth, tissue morphogenesis and maintain cell-to-cell adhesion, plant cell have to detect these mechanical signals. That is performed by a group of still not well enough characterized plant mechanosensitive proteins. Mechanosensors are proteins capable of detecting changes in mechanical stress patterns and translating them into physiological and developmental outputs. One of plant mechanosensitive proteins, DEFECTIVE KERNEL1 (DEK1) has shown to be a very important in proper plant development. DEK1 bears similarity with animal cysteine proteases of Calpain superfamily. DEK1 is very important for plant development since all null alleles are embryo lethal. During the last 20 years of DEK1 studies, this protein has proven to be a very difficult for different molecular and biochemical manipulations. As a consequence, very little is known about its direct target proteins. Wang and co-workers (2003) and Johnson and co-workers (2008) have given a valuable contribution to biochemical understanding of DEK1 by determining that it functions as Cys-protease in similar way as animal calpains. However, a lot of indirect knowledge was gathered about the effects of disruption and modulation of DEK1 activity. DEK1 is important for proper organ development, epidermal specification, and maintenance. However, some studies have inferred that DEK1 affects expression of different cell wall related genes, and it regulates cell-to-cell adhesion in epidermal cells. This led to two extensive studies (Amanda et al., 2016, 2017) which demonstrated importance of DEK1 in regulation leaf epidermal cell walls in A. thaliana mature leaves and inflorescence stems. These studies demonstrated that DEK1 also influences cell wall thickness and cell-to-cell adhesion and that it could potentially regulate cell growth and expansion. Building up on this research, we decided to try to further characterize molecular and biomechanical aspects of DEK1 mediated cell wall regulation, with special emphasis on regulation of cellulose synthesis. We used two mutant lines, with modulated DEK1 activity, a constitutive overexpressor for DEK1 CALPAIN domain and a point mutant in CALPAIN domain, dek1-4. In Chapter 3 we demonstrated that DEK1 regulates dynamics of Cellulose Synthase Complexes (CSCs). Both lines showed decreased crystalline cellulose contents. This led us to investigate if velocity of CSCs in cotyledons, was affected, since it is known that changes in cellulose contents are often caused by defects in CSC. We found that bothDEK1 modulated lines we used have significantly decreased velocity of CSCs. We have also examined plasma membrane turnover rates of CSCs and found out that after photo-bleaching OE CALPAIN has much faster recovery rates compared to Col-0 wild type, while dek1-4 has lower exocytotic rates of CSCs, and much longer life-time of CSCs inserted into the plasma membrane. These results suggested that DEK1 regulates different aspects of CSC dynamics, possibly through interaction with different regulatory proteins. Decrease in cellulose contents we observed in DEK1 modulated lines, prompted us to investigate how this reflects biomechanics and structural properties of epidermal cotyledon cell walls of DEK1 modulated lines, which is described in Chapter 4. To achieve this, we developed a novel microdissection method for isolation and mechanical and structural characterization of native epidermal cell wall monolayers using atomic force microscopy (AFM). AFM force spectroscopy assays showed that both DEK1 modulated lines had stiffer cell walls compared to Col-0. This was awkward since we initially detected decrease in crystalline cellulose which implied decrease in cell wall stiffness. However, subsequent high-resolution AFM imaging has revealed that DEK1 modulate lines cells walls have their cellulose microfibrils organized in thicker bundles than Col-0. Also, polysaccharide composition analysis has revealed that DEK1 modulated lines have increased abundance of pectins, which could also be responsible for the observed increase in cell wall stiffness. Previous work has shown that different dek1 mutants and modulated lines have defects in cell-to-cell adhesion. This implied that DEK1 may be involved in sensing and/or maintaining cell wall integrity (CWI). We performed several growth assays to determine role of DEK1 in CWI, which is described in Chapter 5. We performed cellulose synthesis perturbation assays with cellulose synthesis inhibitor Isoxaben and obtained very interesting results. While OE CALPAIN plants were hypersensitive to Isoxaben, dek1-4 has shown complete insensitivity. Furthermore, a regular CWI maintenance response, reported in A. thaliana as result of compromised CWI, ectopic lignification in seedlings’ roots was absent in both DEK1 modulated lines we examined. We detected interesting growth response of DEK1 lines to NaCl and mannitol treatments as well. Although these findings are pointing out that DEK1 could be part of CWI signalling pathways, more experiments are necessary to fully elucidate possible role of DEK1 in CWI sensing and/or maintenance pathways, especially to check if DEK1 is interacting with Catharanthus roseus Receptor Like Kinase group of CWI sensors. Studies on 4-month old short day grown DEK1 modulated lines, have shown defects in branching, with development of fasciated stem branches in a DEK1 modulated line overexpressing CALPAIN domain (Amanda et al., 2017). This result pointed out to a possibility that DEK1 may regulate organ morphogenesis and patterning at the level of shoot apical meristem (SAM). Work towards elucidating role of DEK1 in SAM maintenance and organ patterning is detailed in Chapter 6. We determined that OE CALPAIN had significantly larger central zone of SAM as well as larger individual SAM cells in central zone, as well as higher distribution of cell sizes, implying possible cell expansion defects. dek1-4 did not exhibited changes in SAM central zone size or individual stem cell size, but it seemed that it had increased number of stem cells in SAM central zone. Both DEK1 lines had perturbation of phyllotaxis on SAM level, with disturbed divergence angles between floral primordia. Disturbed phyllotaxis was also observed between siliques, in mature plants. In addition to this, OE CALPAIN has exhibited occurrence of multiple (up to four) siliques growing from a single stem node. All this is pointing out that DEK1 might participate in hormone-signalling in the SAM.. DEK1 is a highly intriguing protein. However, since it is a unigene, and in addition to that, a regulatory protease, it probably participates in multiple signalling pathways, which makes understanding its function much more complicated. KW - DEK1 KW - atomic force microscopy KW - cellulose microfibrils KW - shoot apical meristem KW - phyllotaxis KW - biomechanics KW - cellulose synthase complex KW - cell wall Y1 - 2021 ER - TY - THES A1 - Wang, Yang T1 - Role of the actin cytoskeleton in cellular morphogenesis at the shoot apical meristem of Arabidopsis thaliana N2 - The morphogenesis of sessile plants is mainly driven by directional cell growth and cell division. The organization of their cytoskeleton and the mechanical properties of the cell wall greatly influence morphogenetic events in plants. It is well known that cortical microtubules (CMTs) contribute to directional growth by regulating the deposition of the cellulose microfibrils, as major cell wall fortifying elements. More recent findings demonstrate that mechanical stresses existing in cells and tissues influence microtubule organization. Also, in dividing cells, mechanical stress directions contribute to the orientation of the new cell wall. In comparison to the microtubule cytoskeleton, the role of the actin cytoskeleton in regulating shoot meristem morphogenesis has not been extensively studied. This thesis focuses on the functional relevance of the actin cytoskeleton during cell and tissue scale morphogenesis in the shoot apical meristem (SAM) of Arabidopsis thaliana. Visualization of transcriptional reporters indicates that ACTIN2 and ACTIN7 are two highly expressed actin genes in the SAM. A link between the actin cytoskeleton and SAM development derives from the observation that the act2-1 act7-1 double mutant has abnormal cell shape and perturbed phyllotactic patterns. Live-cell imaging of the actin cytoskeleton further shows that its organization correlates with cell shape, which indicates a potential role of actin in influencing cellular morphogenesis. In this thesis, a detailed characterization of the act2-1 act7-1 mutant reveals that perturbation of actin leads to more rectangular cellular geometries with more 90° cell internal angles, and higher incidences of four-way junctions (four cell boundaries intersecting together). This observation deviates from the conventional tricellular junctions found in epidermal cells. Quantitative cellular-level growth data indicates that such differences in the act2-1 act7-1 mutant arise due to the reduced accuracy in the placement of the new cell wall, as well as its mechanical maturation. Changes in cellular morphology observed in the act2-1 act7-1 mutant result in cell packing defects that subsequently compromise the flow of information among cells in the SAM. N2 - Die Morphogenese sessiler Pflanzen wird hauptsächlich durch gerichtetes Zellwachstum und Zellteilung angetrieben. Die Organisation des Zytoskeletts und die mechanischen Eigenschaften der Zellwand haben großen Einfluss auf die morphogenetischen Vorgänge in Pflanzen. Es ist bekannt, dass kortikale Mikrotubuli (CMTs) zum gerichteten Wachstum beitragen, indem sie die Bildung von Zellulose-Mikrofibrillen als wichtige Elemente zur Stärkung der Zellwand regulieren. Neuere Erkenntnisse zeigen, dass mechanische Spannungen in den Zellen und Geweben die Organisation der Mikrotubuli beeinflussen. Bei der Zellteilung tragen auch die mechanischen Belastungsrichtungen zur Ausrichtung der neuen Zellwand bei. Im Vergleich zum Zytoskelett der Mikrotubuli ist die Rolle des Aktinzytoskeletts bei der Regulierung der Morphogenese des Sprossmeristems noch nicht umfassend untersucht worden. Diese Arbeit befasst sich mit der funktionellen Bedeutung des Aktinzytoskeletts bei der Zell- und Gewebemorphogenese im Sprossapikalmeristem (SAM) von Arabidopsis thaliana. Die Visualisierung von Transkriptionsreportern zeigt, dass ACTIN2 und ACTIN7 zwei stark exprimierte Aktingene im SAM sind. Eine Verknüpfung zwischen dem Aktinzytoskelett und der Entwicklung des SAMs ergibt sich aus der Beobachtung, dass die act2-1 act7-1 Doppelmutante eine abnorme Zellform und ein gestörtes phyllotaktisches Muster aufweist. Die Lebend-Zell Aufnahmen des Aktinzytoskeletts zeigt außerdem, dass seine Organisation mit der Zellform korreliert, was auf eine mögliche Rolle des Aktins bei der Beeinflussung der zellulären Morphogenese hinweist. In dieser Arbeit wird anhand einer detaillierten Charakterisierung der act2-1 act7-1 Mutante gezeigt, dass eine Störung des Aktins zu rechteckigeren Zellgeometrien mit mehr 90°-Zellinnenwinkeln und einem höheren Vorkommen von Vierfach-Verbindungen (vier sich kreuzende Zellgrenzen) führt. Diese Beobachtung weicht von den konventionellen trizellulären Verbindungen der Epidermiszellen ab. Quantitative Wachstumsdaten auf zellulärer Ebene deuten darauf hin, dass diese Unterschiede in der act2-1 act7-1 Mutante auf die geringere Präzision bei der Platzierung der neuen Zellwand sowie auf ihre mechanische Reifung zurückzuführen sind. Die bei der act2-1 act7-1 Mutante beobachteten Veränderungen der Zellmorphologie führen zu Defekten in der Zellanordnung, die in der weiteren Folge den Informationsfluss zwischen den Zellen im SAM beeinträchtigen. KW - Arabidopsis KW - shoot apical meristem KW - actin KW - cell division KW - cell shape KW - morphogenesis Y1 - 2022 U6 - https://doi.org/10.25932/publishup-55908 ER -