TY - JOUR A1 - Jänicke, Clemens A1 - Goddard, Adam A1 - Stein, Susanne A1 - Steinmann, Horst-Henning A1 - Lakes, Tobia A1 - Nendel, Claas A1 - Müller, Daniel T1 - Field-level land-use data reveal heterogeneous crop sequences with distinct regional differences in Germany JF - European journal of agronomy N2 - Crop cultivation intensifies globally, which can jeopardize biodiversity and the resilience of cropping systems. We investigate changes in crop rotations as one intensification metric for half of the croplands in Germany with annual field-level land-use data from 2005 to 2018. We proxy crop rotations with crop sequences and compare how these sequences changed among three seven-year periods. The results reveal an overall high diversity of crop sequences in Germany. Half of the cropland has crop sequences with four or more crops within a seven-year period, while continuous cultivation of the same crop is present on only 2% of the cropland. Larger farms tend to have more diverse crop sequences and organic farms have lower shares of cereal crops. In three federal states, crop rotations became less structurally diverse over time, i.e. the number of crops and the number of changes between crops decreased. In one state, structural diversity increased and the proportion of monocropping decreased. The functional diversity of the crop sequences, which measures the share of winter and spring crops as well as the share of leaf and cereal crops per sequence, remained largely stable. Trends towards cereal-or leaf -crop dominated sequences varied between the states, and no clear overall dynamic could be observed. However, the share of winter crops per sequence decreased in all four federal states. Quantifying the dynamics of crop sequences at the field level is an important metric of land-use intensity and can reveal the patterns of land-use intensification. KW - crop production KW - crop rotation KW - cropping diversity KW - IACS KW - intensification KW - land-use intensity Y1 - 2022 U6 - https://doi.org/10.1016/j.eja.2022.126632 SN - 1161-0301 SN - 1873-7331 VL - 141 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Neill, Christopher A1 - Jankowski, KathiJo A1 - Brando, Paulo M. A1 - Coe, Michael T. A1 - Deegan, Linda A. A1 - Macedo, Marcia N. A1 - Riskin, Shelby H. A1 - Porder, Stephen A1 - Elsenbeer, Helmut A1 - Krusche, Alex V. T1 - Surprisingly Modest Water Quality Impacts From Expansion and Intensification of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region JF - Tropical conservation science N2 - Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single-and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single-and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices. KW - water KW - quality KW - agriculture KW - intensification KW - impact Y1 - 2017 U6 - https://doi.org/10.1177/1940082917720669 SN - 1940-0829 VL - 10 PB - Sage Publ. CY - Thousand Oaks ER -