TY - JOUR A1 - Chen, Lu A1 - Yan, Runyu A1 - Oschatz, Martin A1 - Jiang, Lei A1 - Antonietti, Markus A1 - Xiao, Kai T1 - Ultrathin 2D graphitic carbon nitride on metal films BT - underpotential sodium deposition in adlayers for sodium-ion batteries JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Efficient and low-cost anode materials for the sodium-ion battery are highly desired to enable more economic energy storage. Effects on an ultrathin carbon nitride film deposited on a copper metal electrode are presented. The combination of effects show an unusually high capacity to store sodium metal. The g-C3N4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical-vapor deposition method. A high reversible capacity of formally up to 51 Ah g(-1) indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na-deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte. KW - 2D films KW - carbon nitride KW - chemical vapor deposition KW - sodium-ion KW - batteries KW - underpotential deposition Y1 - 2020 U6 - https://doi.org/10.1002/anie.202000314 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 23 SP - 9067 EP - 9073 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Chen, Zupeng A1 - Savateev, Aleksandr A1 - Pronkin, Sergey A1 - Papaefthimiou, Vasiliki A1 - Wolff, Christian Michael A1 - Willinger, Marc Georg A1 - Willinger, Elena A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Dontsova, Dariya T1 - "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts JF - Advanced materials N2 - Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger. KW - carbon nitride KW - glycerol oxidation KW - mesocrystals KW - poly(heptazine imide) KW - water reduction reactions Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700555 SN - 0935-9648 SN - 1521-4095 VL - 29 SP - 21800 EP - 21806 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jordan, Thomas A1 - Fechler, Nina A1 - Xu, Jingsan A1 - Brenner, Thomas J. K. A1 - Antonietti, Markus A1 - Shalom, Menny T1 - "Caffeine Doping" of Carbon/Nitrogen-Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes JF - ChemCatChem : heterogeneous & homogeneous & bio- & nano-catalysis ; a journal of ChemPubSoc Europe N2 - An alternative method for the structure tuning of carbon nitride materials by using a supramolecular approach in combination with caffeine as lining-agent is described. The self-assembly of the precursor complex consisting of melamine and cyanuric acid can be controlled by this doping molecule in terms of morphology, electronic, and photophysical properties. Caffeine is proposed to insert as an edge-molecule eventually leading to hollow tube-like carbon nitride structures with improved efficiency of charge formation. Compared to the bulk carbon nitride, the caffeine-doped analogue possesses a higher photocatalytic activity for the degradation of rhodamineB dye. Furthermore, this approach is also shown to be suitable for the modification of carbon nitride electrodes. KW - caffeine KW - carbon nitride KW - films KW - photocatalysis KW - supramolecular chemistry Y1 - 2015 U6 - https://doi.org/10.1002/cctc.201500343 SN - 1867-3880 SN - 1867-3899 VL - 7 IS - 18 SP - 2826 EP - 2830 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Savatieiev, Oleksandr T1 - Carbon nitride semiconductors: properties and application as photocatalysts in organic synthesis N2 - Graphitic carbon nitrides (g-CNs) are represented by melon-type g-CN, poly(heptazine imides) (PHIs), triazine-based g-CN and poly(triazine imide) with intercalated LiCl (PTI/Li+Cl‒). These materials are composed of sp2-hybridized carbon and nitrogen atoms; C:N ratio is close to 3:4; the building unit is 1,3,5-triazine or tri-s-triazine; the building units are interconnected covalently via sp2-hybridized nitrogen atoms or NH-moieties; the layers are assembled into a stack via weak van der Waals forces as in graphite. Due to medium band gap (~2.7 eV) g-CNs, such as melon-type g-CN and PHIs, are excited by photons with wavelength ≤ 460 nm. Since 2009 g-CNs have been actively studied as photocatalysts in evolution of hydrogen and oxygen – two half-reactions of full water splitting, by employing corresponding sacrificial agents. At the same time application of g-CNs as photocatalysts in organic synthesis has been remaining limited to few reactions only. Cumulative Habilitation summarizes research work conducted by the group ‘Innovative Heterogeneous Photocatalysis’ between 2017-2023 in the field of carbon nitride organic photocatalysis, which is led by Dr. Oleksandr Savatieiev. g-CN photocatalysts activate molecules, i.e. generate their more reactive open-shell intermediates, via three modes: i) Photoinduced electron transfer (PET); ii) Excited state proton-coupled electron transfer (ES-PCET) or direct hydrogen atom transfer (dHAT); iii) Energy transfer (EnT). The scope of reactions that proceed via oxidative PET, i.e. one-electron oxidation of a substrate to the corresponding radical cation, are represented by synthesis of sulfonylchlorides from S-acetylthiophenols. The scope of reactions that proceed via reductive PET, i.e. one-electron reduction of a substrate to the corresponding radical anion, are represented by synthesis of γ,γ-dichloroketones from the enones and chloroform. Due to abundance of sp2-hybridized nitrogen atoms in the structure of g-CN materials, they are able to cleave X-H bonds in organic molecules and store temporary hydrogen atom. ES-PCET or dHAT mode of organic molecules activation to the corresponding radicals is implemented for substrates featuring relatively acidic X-H bonds and those that are characterized by low bond dissociation energy, such as C-H bond next to the heteroelements. On the other hand, reductively quenched g-CN carrying hydrogen atom reduces a carbonyl compound to the ketyl radical via PCET that is thermodynamically more favorable pathway compared to the electron transfer. The scope of these reactions is represented by cyclodimerization of α,β-unsaturated ketones to cyclopentanoles. g-CN excited state demonstrates complex dynamics with the initial formation of singlet excited state, which upon intersystem crossing produces triplet excited state that is characterized by the lifetime > 2 μs. Due to long lifetime, g-CN activate organic molecules via EnT. For example, g-CN sensitizes singlet oxygen, which is the key intermediate in the dehydrogenation of aldoximes to nitrileoxides. The transient nitrileoxide undergoes [3+2]-cycloaddition to nitriles and gives oxadiazoles-1,2,4. PET, ES-PCET and EnT are fundamental phenomena that are applied beyond organic photocatalysis. Hybrid composite is formed by combining conductive polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with potassium poly(heptazine imide) (K-PHI). Upon PET, K-PHI modulated population of polarons and therefore conductivity of PEDOT:PSS. The initial state of PEDOT:PSS is recovered upon material exposure to O2. K-PHI:PEDOT:PSS may be applied in O2 sensing. In the presence of electron donors, such as tertiary amines and alcohols, and irradiation with light, K-PHI undergoes photocharging – the g-CN material accumulates electrons and charge-compensating cations. Such photocharged state is stable under anaerobic conditions for weeks, but at the same time it is a strong reductant. This feature allows decoupling in time light harvesting and energy storage in the form of electron-proton couples from utilization in organic synthesis. The photocharged state of K-PHI reduces nitrobenzene to aniline, and enables dimerization of α,β-unsaturated ketones to hexadienones in dark. N2 - Graphitische Kohlenstoffnitride (g-CNs) werden durch g-CN vom Melonen-Typ, Poly(heptazinimide) (PHIs), g-CN auf Triazinbasis und Poly(triazinimid) mit interkaliertem LiCl (PTI/Li+Cl-) repräsentiert. Diese Materialien bestehen aus sp2-hybridisierten Kohlenstoff- und Stickstoffatomen; das C:N-Verhältnis liegt nahe bei 3:4; das Grundgerüst ist 1,3,5-Triazin oder Tri-s-Triazin; die Grundgerüste sind kovalent über sp2-hybridisierte Stickstoffatome oder NH-Moleküle miteinander verbunden; die Schichten werden über schwache van-der-Waals-Kräfte wie in Graphit zu einem Stapel zusammengefügt. Aufgrund der mittleren Bandlücke (~2,7 eV) werden g-CNs, wie z. B. g-CN vom Melonen-Typ und PHIs, durch Photonen mit einer Wellenlänge ≤ 460 nm angeregt. Seit 2009 werden g-CNs aktiv als Photokatalysatoren für die Entwicklung von Wasserstoff und Sauerstoff - zwei Halbreaktionen der vollständigen Wasserspaltung - untersucht, indem entsprechende Opferstoffe eingesetzt werden. Gleichzeitig ist die Anwendung von g-CNs als Photokatalysatoren in der organischen Synthese auf wenige Reaktionen beschränkt geblieben. Die kumulative Habilitation fasst die Forschungsarbeiten zusammen, die von der Gruppe "Innovative heterogene Photokatalyse" zwischen 2017 und 2023 auf dem Gebiet der organischen Photokatalyse mit Kohlenstoffnitrid durchgeführt wurden, die von Dr. Oleksandr Savatieiev geleitet wird. g-CN-Photokatalysatoren aktivieren Moleküle, d. h. sie erzeugen ihre reaktiveren Zwischenprodukte mit offener Schale über drei Modi: i) photoinduzierter Elektronentransfer (PET); ii) protonengekoppelter Elektronentransfer im angeregten Zustand (ES-PCET) oder direkter Wasserstoffatomtransfer (dHAT); iii) Energietransfer (EnT). Der Bereich der Reaktionen, die über oxidativen PET ablaufen, d. h. die Ein-Elektronen-Oxidation eines Substrats zum entsprechenden Radikalkation, wird durch die Synthese von Sulfonylchloriden aus S-Acetylthiophenolen dargestellt. Der Bereich der Reaktionen, die über reduktive PET ablaufen, d. h. Reduktion eines Substrats mit einem Elektron zum entsprechenden radikalischen Anion, wird durch die Synthese von γ,γ-Dichloroketonen aus Enonen und Chloroform repräsentiert. Aufgrund der zahlreichen sp2-hybridisierten Stickstoffatome in der Struktur der g-CN-Materialien können sie X-H-Bindungen in organischen Molekülen spalten und temporäre Wasserstoffatome speichern. Der ES-PCET- oder dHAT-Modus der Aktivierung organischer Moleküle zu den entsprechenden Radikalen wird bei Substraten mit relativ sauren X-H-Bindungen und solchen, die sich durch eine niedrige Bindungsdissoziationsenergie auszeichnen, wie z. B. die C-H-Bindung neben den Heteroelementen, durchgeführt. Andererseits reduziert reduktiv gequenchtes g-CN, das ein Wasserstoffatom trägt, eine Carbonylverbindung über PCET zum Ketylradikal, was im Vergleich zum Elektronentransfer der thermodynamisch günstigere Weg ist. Der Umfang dieser Reaktionen wird durch die Cyclodimerisierung von α,β-ungesättigten Ketonen zu Cyclopentanolen dargestellt. Der angeregte Zustand von g-CN zeigt eine komplexe Dynamik mit der anfänglichen Bildung eines angeregten Singulett-Zustands, der beim Übergang zwischen den Systemen einen angeregten Triplett-Zustand erzeugt, der durch eine Lebensdauer von > 2 μs gekennzeichnet ist. Aufgrund der langen Lebensdauer aktivieren g-CN organische Moleküle über EnT. So sensibilisiert g-CN beispielsweise Singulett-Sauerstoff, der das wichtigste Zwischenprodukt bei der Dehydrierung von Aldoximen zu Nitriloxiden ist. Das transiente Nitriloxid unterliegt einer [3+2]-Cycloaddition zu Nitrilen und ergibt Oxadiazole-1,2,4. PET, ES-PCET und EnT sind grundlegende Phänomene, die über die organische Photokatalyse hinaus Anwendung finden. Hybridkomposit wird durch die Kombination von leitfähigen Polymeren wie Poly(3,4-ethylendioxythiophen)polystyrolsulfonat (PEDOT:PSS) mit Kaliumpoly(heptazinimid) (K-PHI) gebildet. Nach PET modulierte K-PHI die Population der Polaronen und damit die Leitfähigkeit von PEDOT:PSS. Der Ausgangszustand von PEDOT:PSS wird wiederhergestellt, wenn das Material O2 ausgesetzt wird. K-PHI:PEDOT:PSS kann für die O2-Sensorik verwendet werden. In Gegenwart von Elektronendonatoren, wie tertiären Aminen und Alkoholen, und bei Lichteinstrahlung wird K-PHI photogeladen - das g-CN-Material sammelt Elektronen und ladungsausgleichende Kationen an. Dieser photogeladene Zustand ist unter anaeroben Bedingungen wochenlang stabil, gleichzeitig ist er aber ein starkes Reduktionsmittel. Diese Eigenschaft ermöglicht die zeitliche Entkopplung von Lichtsammlung und Energiespeicherung in Form von Elektron-Protonen-Paaren von der Nutzung in der organischen Synthese. Der photogeladene Zustand von K-PHI reduziert Nitrobenzol zu Anilin und ermöglicht die Dimerisierung von α,β-ungesättigten Ketonen zu Hexadienonen im Dunkeln. KW - carbon nitride KW - photocatalysis KW - photochemistry KW - photocharging KW - organic synthesis Y1 - 2023 ER - TY - JOUR A1 - Xu, Jingsan A1 - Brenner, Thomas J. K. A1 - Chen, Zupeng A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Shalom, Menny T1 - Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light JF - ACS applied materials & interfaces N2 - Herein, we report the use of upconversion agents to modify graphite carbon nitride (g-C3N4) by direct thermal condensation of a mixture of ErCl3 center dot 6H(2)O and the supramolecular precursor cyanuric acid-melamine. We show the enhancement of g-C3N4 photoactivity after Er3+ doping by monitoring the photodegradation of Rhodamine B dye under visible light. The contribution of the upconversion agent is demonstrated by measurements using only a red laser. The Er3+ doping alters both the electronic and the chemical properties of g-C3N4. The Er3+ doping reduces emission intensity and lifetime, indicating the formation of new, nonradiative deactivation pathways, probably involving charge-transfer processes. KW - metal-free photocatalysis KW - upconversion KW - carbon nitride KW - RhB photodegradation Y1 - 2014 U6 - https://doi.org/10.1021/am5051263 SN - 1944-8244 VL - 6 IS - 19 SP - 16481 EP - 16486 PB - American Chemical Society CY - Washington ER -