TY - JOUR A1 - Baunach, Martin A1 - Chowdhury, Somak A1 - Stallforth, Pierre A1 - Dittmann-Thünemann, Elke T1 - The landscape of recombination events that create nonribosomal peptide diversity JF - Molecular biology and evolution : MBE N2 - Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing andmatching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the A(core) domains, yet domain interfaces and the flexible A(sub) domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches. KW - evolution KW - recombination KW - structural diversity KW - natural products KW - nonribosomal peptide synthetases KW - microbial ecology Y1 - 2021 U6 - https://doi.org/10.1093/molbev/msab015 SN - 0737-4038 SN - 1537-1719 VL - 38 IS - 5 SP - 2116 EP - 2130 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gao, Feng A1 - Wang, Jianpu A1 - Blakesley, James C. A1 - Hwang, Inchan A1 - Li, Zhe A1 - Greenham, Neil C. T1 - Quantifying loss mechanisms in polymer Fullerene photovoltaic devices JF - dvanced energy materials KW - organic photovoltaics KW - recombination KW - bulk heterojunctions KW - loss mechanisms KW - drift-diffusion models Y1 - 2012 U6 - https://doi.org/10.1002/aenm.201200073 SN - 1614-6832 VL - 2 IS - 8 SP - 956 EP - 961 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kegelmann, Lukas A1 - Tockhorn, Philipp A1 - Wolff, Christian Michael A1 - Márquez, José A. A1 - Caicedo Dávila, Sebastián A1 - Korte, Lars A1 - Unold, Thomas A1 - Loevenich, Wilfried A1 - Neher, Dieter A1 - Rech, Bernd A1 - Albrecht, Steve T1 - Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells JF - ACS applied materials & interfaces N2 - Doped spiro-OMeTAD at present is the most commonly used hole transport material (HTM) in n-i-p-type perovskite solar cells, enabling high efficiencies around 22%. However, the required dopants were shown to induce nonradiative recombination of charge carriers and foster degradation of the solar cell. Here, in a novel approach, highly conductive and inexpensive water-free poly(3,4-ethylenedioxythiophene) (PEDOT) is used to replace these dopants. The resulting spiro-OMeTAD/PEDOT (SpiDOT) mixed films achieve higher lateral conductivities than layers of doped spiro-OMeTAD. Furthermore, combined transient and steady-state photoluminescence studies reveal a passivating effect of PEDOT, suppressing nonradiative recombination losses at the perovskite/HTM interface. This enables excellent quasi-Fermi level splitting values of up to 1.24 eV in perovskite/SpiDOT layer stacks and high open-circuit voltages (V-OC) up to 1.19 V in complete solar cells. Increasing the amount of dopant-free spiro-OMeTAD in SpiDOT layers is shown to enhance hole extraction and thereby improves the fill factor in solar cells. As a consequence, stabilized efficiencies up to 18.7% are realized, exceeding cells with doped spiro-OMeTAD as a HTM in this study. Moreover, to the best of our knowledge, these results mark the lowest nonradiative recombination loss in the V-OC (140 mV with respect to the Shockley-Queisser limit) and highest efficiency reported so far for perovskite solar cells using PEDOT as a HTM. KW - perovskite solar cell KW - selective contact KW - spiro-OMeTAD KW - PEDOT KW - recombination KW - passivation KW - quasi-Fermi level splitting Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01332 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 9 SP - 9172 EP - 9181 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Krückemeier, Lisa A1 - Rau, Uwe A1 - Stolterfoht, Martin A1 - Kirchartz, Thomas T1 - How to report record open-circuit voltages in lead-halide perovskite solar cells T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Open-circuit voltages of lead-halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open-circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open-circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta-analysis of methods to determine the bandgap and a radiative limit for open-circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1194 KW - Shockley-Queisser model KW - bandgap KW - fill factor losses KW - nonradiative voltage losses KW - photovoltaics KW - radiative limit KW - recombination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525289 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Krückemeier, Lisa A1 - Rau, Uwe A1 - Stolterfoht, Martin A1 - Kirchartz, Thomas T1 - How to report record open-circuit voltages in lead-halide perovskite solar cells JF - Advanced energy materials N2 - Open-circuit voltages of lead-halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open-circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open-circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta-analysis of methods to determine the bandgap and a radiative limit for open-circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed. KW - bandgap KW - fill factor losses KW - nonradiative voltage losses KW - photovoltaics KW - radiative limit KW - recombination KW - Shockley-Queisser model Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201902573 SN - 1614-6832 SN - 1614-6840 VL - 10 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Kulikovsky, Lazar T1 - Experimentelle Untersuchung der Ladungsträgerdynamik in photorefraktiven Polymeren N2 - Die heutige optische Informationsverarbeitung erfordert neue Materialien, die Licht effektiv verarbeiten, steuern und speichern können. Photorefraktive (PR) Materialien sind dafür sehr interessant. In diesen Materialien entsteht bei inhomogener Beleuchtung (z.B. mit einem Intererenzmuster) über Ladungsträgergenerierung und Einfang der Ladungsträger in Fallen ein Raumladungsfeld. Dieses wird über den elektrooptischen Effekt in eine räumliche Modulation des Brechungsindex umgesetzt. Letztendlich führt somit die inhomogene Beleuchtung eines PR-Materials zu einer räumlich variierenden Änderung des Brechungsindex. Vor ca. 10 Jahren wurde entdeckt, dass auch Polymere einen PR-Effekt aufweisen können. Die Ansprechzeit dieser Materialien wird dabei wesentlich durch die Dynamik der Ladungsträger (bestimmt durch Erzeugung, Transport, Einfang in Fallen etc.) begrenzt. Bis zu Beginn dieser Arbeit war es noch nicht gelungen, einen quantitativen Zusammenhang zwischen der Ladungsträgerdynamik und der Ansprechzeit des PR-Effekts experimentell nachzuweisen. In dieser Arbeit wird ein Weg aufgezeigt, durch photophysikalische Experimente unter verschiedenen Beleuchtungsbedingungen alle photophysikalischen Größen experimentell zu bestimmen, die den Aufbau des Raumladungsfelds in organischen photorefraktiven Materialien bestimmen. So konnte durch Experimente unter Beleuchtung mit kurzen Einzelpulsen sowohl die Beweglichkeit der freien Ladungsträger als auch die charakteristischen Parameter flacher Fallen ermittelt werden. Zur Bestimmung der Dichte tiefer Fallen wurde die Intensitätsabhängigkeit des stationären Photostroms untersucht. Durch die analytische Lösung des bestimmenden Gleichungssystems konnte gezeigt werden, dass die Sublinearität der Intensitätsabhängigkeit des Photostroms primär mit dem Verhältnis zwischen Entleerungs- und Einfangkoeffizienten tiefer Fallen korreliert. Zur unabhängigen Bestimmung des Entleerungskoeffizienten der tiefen Fallen wurden Doppelpulsexperimente mit variabler Verzögerungszeit zwischen den Pulsen verwendet. Mit den erhaltenen Parametern konnte dann das untere Limit der zum Aufbau des Raumladungsfelds notwendigen Zeit abgeschätzt werden. Diese Werte wurden mit den gemessenen photorefraktiven Ansprechzeiten verglichen. Es zeigt sich, dass weder die Photogeneration noch der Transport der Ladungsträger die Geschwindigkeit des Aufbaus des Raumladungsfeldes limitiert. Stattdessen konnte erstmals quantitativ nachgewiesen werden, dass die Dynamik des Raumladungsfelds in den hier untersuchten PR-Materialien durch das Füllen tiefer Fallen mit photogenerierten Ladungsträgern bestimmt wird. Dabei spielt das Verhältnis zwischen dem Einfang- und dem Rekombinationskoeffizienten eine wesentliche Rolle. Weiterhin wurde die Dynamik des Aufbaus des Raumladungsfelds bei unterschiedlichen Vorbeleuchtungsbedingungen quantitativ simuliert und mit den experimentellen PR-Transienten verglichen. Die gute Übereinstimmung zwischen den simulierten und gemessenen Transienten erlaubte es abschließend, die kritischen Parameter, die die Dynamik des PR-Effekts in den untersuchten Polymeren begrenzen, zu identifizieren. N2 - The ongoing development of information processing requires new materials that are capable of effective light modulation, processing or storage. Photorefractive (PR) materials characterized by a reversible light-induced change of the refractive index have been effectively used for different optical applications. When a photorefractive medium is inhomogeneously irradiated, using for example an interference pattern, the generation, transport and trapping of the charge carriers results in the formation of a space charge field. The spatial modulation of the space charge field is transformed through the electro-optical effect into a modulation of the refractive index. While photorefractive crystals are well known since the discovery of the PR effect in 1966, the photorefractive effect in polymers has only recently been demonstrated. The flexibility of material composition and thus its parameters along with easy processability of polymer materials essentially extends the range of possible applications of photorefractive materials. The response time of PR polymers is defined by the charge carrier dynamics including generation, transport, trapping etc. But a relation between the charge carriers dynamics and the response time of PR effect has not yet been proven experimentally. In this work a method for the experimental determination of all photo-physical parameters defining the formation of the space charge field in organic photorefractive materials has been proposed for the first time. It is based on the analysis of the photocurrent measured under different irradiation conditions such as continuous and pulse irradiation with different intensities, the variation of the pulse length, the number of pulses or the delay between pulses. Thus, the irradiation with single short pulses allowed to determine the mobility of free charge carriers as well as the characteristic parameters of shallow traps. In order to determine the density of deep traps, the intensity dependence of the steady-state photocurrent was investigated. The determining system of equations was analytically solved and it has been shown that the sublinear dependence of the photocurrent on intensity is primary correlated with the ratio of detrapping and trapping coefficients for deep traps. The detrapping coefficient of deep traps was independently determined from double-pulse experiments in which the delay between two pulses was varied. The dynamics of the space charge field formation has been numerically simulated, using the obtained photophysical parameters, and proven to coincide well with the experimentally determined dynamics of the PR effect. This allowed to relate the parameters of the individual processes participating in the formation of the space charge field to the dynamics of the PR effect in the investigated polymers. These results show that neither photogeneration nor transport of the charge carriers do limit the formation of the space charge field. It is demonstrated that in the investigated PR materials the dynamics of the space charge field is limited by the filling of deep traps with the photogenerated charge carriers. KW - Photorefraktive Polymere KW - Raumladungsfeld KW - Ladungsträgerdynamik KW - Photogeneration KW - Trapping KW - Rekombination KW - Photorefractive polymers KW - space charge field KW - carrier dynamic KW - photogeneration KW - trapping KW - recombination Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001205 ER - TY - GEN A1 - Lukan, Tjaša A1 - Machens, Fabian A1 - Coll, Anna A1 - Baebler, Špela A1 - Messerschmidt, Katrin A1 - Gruden, Kristina T1 - Plant X-tender BT - an extension of the AssemblX system for the assembly and expression of multigene constructs in plants T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scarfree and sequence-independent multigene assembly strategy AssemblX,based on overlapdepended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 990 KW - ligation cloning extract KW - DNA cloning KW - synthetic biology KW - multiple genes KW - vector system KW - transformation KW - recombination KW - protein KW - RNA KW - Methylation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446281 SN - 1866-8372 IS - 990 ER - TY - JOUR A1 - Ran, Niva A. A1 - Love, John A. A1 - Heiber, Michael C. A1 - Jiao, Xuechen A1 - Hughes, Michael P. A1 - Karki, Akchheta A1 - Wang, Ming A1 - Brus, Viktor V. A1 - Wang, Hengbin A1 - Neher, Dieter A1 - Ade, Harald A1 - Bazan, Guillermo C. A1 - Thuc-Quyen Nguyen, T1 - Charge generation and recombination in an organic solar cell with low energetic offsets JF - dvanced energy materials N2 - Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets. KW - energetic offset KW - fill factor KW - morphology KW - organic solar cells KW - recombination Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701073 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 5 PB - Wiley-VCH CY - Weinheim ER -