TY - THES A1 - Chirvasa, Mihaela T1 - Finite difference methods for 1st Order in time, 2nd order in space, hyperbolic systems used in numerical relativity T1 - Finite Differenzen für hyperbolische Gleichungen erster Ordnung in der Zeit, zweiter Ordnung im Raum in der numerischen Relativitätstheorie N2 - This thesis is concerned with the development of numerical methods using finite difference techniques for the discretization of initial value problems (IVPs) and initial boundary value problems (IBVPs) of certain hyperbolic systems which are first order in time and second order in space. This type of system appears in some formulations of Einstein equations, such as ADM, BSSN, NOR, and the generalized harmonic formulation. For IVP, the stability method proposed in [14] is extended from second and fourth order centered schemes, to 2n-order accuracy, including also the case when some first order derivatives are approximated with off-centered finite difference operators (FDO) and dissipation is added to the right-hand sides of the equations. For the model problem of the wave equation, special attention is paid to the analysis of Courant limits and numerical speeds. Although off-centered FDOs have larger truncation errors than centered FDOs, it is shown that in certain situations, off-centering by just one point can be beneficial for the overall accuracy of the numerical scheme. The wave equation is also analyzed in respect to its initial boundary value problem. All three types of boundaries - outflow, inflow and completely inflow that can appear in this case, are investigated. Using the ghost-point method, 2n-accurate (n = 1, 4) numerical prescriptions are prescribed for each type of boundary. The inflow boundary is also approached using the SAT-SBP method. In the end of the thesis, a 1-D variant of BSSN formulation is derived and some of its IBVPs are considered. The boundary procedures, based on the ghost-point method, are intended to preserve the interior 2n-accuracy. Numerical tests show that this is the case if sufficient dissipation is added to the rhs of the equations. N2 - Diese Doktorarbeit beschäftigt sich mit der Entwicklung numerischer Verfahren für die Diskretisierung des Anfangswertproblems und des Anfangs-Randwertproblems unter Einsatz von finite-Differenzen-Techniken für bestimmte hyperbolischer Systeme erster Ordnung in der Zeit und zweiter Ordnung im Raum. Diese Art von Systemen erscheinen in einigen Formulierungen der Einstein'schen-Feldgleichungen, wie zB. den ADM, BSSN oder NOR Formulierungen, oder der sogenanten verallgemeinerten harmonischen Darstellung. Im Hinblick auf das Anfangswertproblem untersuche ich zunächst tiefgehend die mathematischen Eigenschaften von finite-Differenzen-Operatoren (FDO) erster und zweiter Ordnung mit 2n-facher Genaugigkeit. Anschließend erweitere ich eine in der Literatur beschriebene Methode zur Stabilitätsanalyse für Systeme mit zentrierten FDOs in zweiter und vierter Genauigkeitsordung auf Systeme mit gemischten zentrierten und nicht zentrierten Ableitungsoperatoren 2n-facher Genauigkeit, eingeschlossen zusätzlicher Dämpfungsterme, wie sie bei numerischen Simulationen der allgemeinen Relativitätstheorie üblich sind. Bei der Untersuchung der einfachen Wellengleichung als Fallbeispiel wird besonderes Augenmerk auf die Analyse der Courant-Grenzen und numerischen Geschwindigkeiten gelegt. Obwohl unzentrierte, diskrete Ableitungsoperatoren größere Diskretisierungs-Fehler besitzen als zentrierte Ableitungsoperatoren, wird gezeigt, daß man in bestimmten Situationen eine Dezentrierung des numerischen Moleküls von nur einem Punkt bezüglich des zentrierten FDO eine höhere Genauigkeit des numerischen Systems erzielen kann. Die Wellen-Gleichung in einer Dimension wurde ebenfalls im Hinblick auf das Anfangswertproblem untersucht. In Abhängigkeit des Wertes des sogenannten Shift-Vektors, müssen entweder zwei (vollständig eingehende Welle), eine (eingehende Welle) oder keine Randbedingung (ausgehende Welle) definiert werden. In dieser Arbeit wurden alle drei Fälle mit Hilfe der 'Ghost-point-methode' numerisch simuliert und untersucht, und zwar auf eine Weise, daß alle diese Algorithmen stabil sind und eine 2n-Genauigkeit besitzen. In der 'ghost-point-methode' werden die Evolutionsgleichungen bis zum letzen Punkt im Gitter diskretisiert unter Verwendung von zentrierten FDOs und die zusätzlichen Punkte die am Rand benötigt werden ('Ghost-points') werden unter Benutzung von Randwertbedingungen und Extrapolationen abgeschätzt. Für den Zufluß-Randwert wurde zusätzlich noch eine andere Implementierung entwickelt, welche auf der sogenannten SBP-SAT (Summation by parts-simulatanous approximation term) basiert. In dieser Methode werden die diskreten Ableitungen durch Operatoren angenähert, welche die 'Summation-by-parts' Regeln erfüllen. Die Randwertbedingungen selber werden in zusätzlichen Termen integriert, welche zu den Evolutionsgleichnungen der Punkte nahe des Randes hinzuaddiert werden und zwar auf eine Weise, daß die 'summation-by-parts' Eigenschaften erhalten bleiben. Am Ende dieser Arbeit wurde noch eine eindimensionale (kugelsymmetrische) Version der BSSN Formulierung abgeleitet und einige physikalisch relevanten Anfangs-Randwertprobleme werden diskutiert. Die Randwert-Algorithmen, welche für diesen Fall ausgearbeitet wurden, basieren auf der 'Ghost-point-Methode' and erfüllen die innere 2n-Genauigkeit solange genügend Reibung in den Gleichungen zugefügt wird. KW - Finite Differenzen KW - Wellengleichung KW - numerischen Relativitätstheorie KW - finite differences KW - wave equation KW - numerical relativity Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-42135 ER - TY - JOUR A1 - Emma, Mattia A1 - Schianchi, Federico A1 - Pannarale, Francesco A1 - Sagun, Violetta A1 - Dietrich, Tim T1 - Numerical simulations of dark matter admixed neutron star binaries JF - Particles N2 - Multi-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter-free counterparts. Given the increased sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence of dark matter. KW - numerical relativity KW - dark matter KW - neutron stars KW - equation of state; KW - gravitational-wave astronomy KW - multi-messenger astrophysics Y1 - 2022 U6 - https://doi.org/10.3390/particles5030024 SN - 2571-712X VL - 5 IS - 3 SP - 273 EP - 286 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gieg, Henrique A1 - Schianchi, Federico A1 - Dietrich, Tim A1 - Ujevic, Maximiliano T1 - Incorporating a Radiative Hydrodynamics Scheme in the Numerical-Relativity Code BAM JF - Universe : open access journal N2 - To study binary neutron star systems and to interpret observational data such as gravitational-wave and kilonova signals, one needs an accurate description of the processes that take place during the final stages of the coalescence, for example, through numerical-relativity simulations. In this work, we present an updated version of the numerical-relativity code BAM in order to incorporate nuclear-theory-based equations of state and a simple description of neutrino interactions through a neutrino leakage scheme. Different test simulations, for stars undergoing a neutrino-induced gravitational collapse and for binary neutron stars systems, validate our new implementation. For the binary neutron stars systems, we show that we can evolve stably and accurately distinct microphysical models employing the different equations of state: SFHo, DD2, and the hyperonic BHB Lambda phi. Overall, our test simulations have good agreement with those reported in the literature. KW - numerical relativity KW - binary neutron stars KW - neutrinos KW - leakage scheme Y1 - 2022 U6 - https://doi.org/10.3390/universe8070370 SN - 2218-1997 VL - 8 IS - 7 PB - MDPI CY - Basel ER - TY - THES A1 - Kellermann, Thorsten T1 - Accurate numerical relativity simulations of non-vacuumspace-times in two dimensions and applications to critical collapse T1 - Exakte numerisch relativistische Simulationen der Nicht-Vakuum-Raum-Zeit in zwei Dimensionen und deren Anwendung zu Problemen des kritischen Kollaps N2 - This Thesis puts its focus on the physics of neutron stars and its description with methods of numerical relativity. In the first step, a new numerical framework the Whisky2D code will be developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we consider an improved formulation of the conserved form of these equations. The second part will use the new code to investigate the critical behaviour of two colliding neutron stars. Considering the analogy to phase transitions in statistical physics, we will investigate the evolution of the entropy of the neutron stars during the whole process. A better understanding of the evolution of thermodynamical quantities, like the entropy in critical process, should provide deeper understanding of thermodynamics in relativity. More specifically, we have written the Whisky2D code, which solves the general-relativistic hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course brings in 1/r singular terms, where r is the radial cylindrical coordinate, which must be dealt with appropriately. In the above-referenced works, the flux operator is expanded and the 1/r terms, not containing derivatives, are moved to the right-hand-side of the equation (the source term), so that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian formulation. We call this the standard formulation. Another possibility is not to split the flux operator and to redefine the conserved variables, via a multiplication by r. We call this the new formulation. The new equations are solved with the same methods as in the Cartesian case. From a mathematical point of view, one would not expect differences between the two ways of writing the differential operator, but, of course, a difference is present at the numerical level. Our tests show that the new formulation yields results with a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. The second part of the Thesis uses the new code for investigations of critical phenomena in general relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the parameter space where two final states a new stable neutron star or a black hole, lay close to each other. In 1993, Choptuik considered one-parameter families of solutions, S[P], of the Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for every P > P⋆, S[P] contains a black hole and for every P < P⋆, S[P] is a solution not containing singularities. He studied numerically the behavior of S[P] as P → P⋆ and found that the critical solution, S[P⋆], is universal, in the sense that it is approached by all nearly-critical solutions regardless of the particular family of initial data considered. All these phenomena have the common property that, as P approaches P⋆, S[P] approaches a universal solution S[P⋆] and that all the physical quantities of S[P] depend only on |P − P⋆|. The first study of critical phenomena concerning the head-on collision of NSs was carried out by Jin and Suen in 2007. In particular, they considered a series of families of equal-mass NSs, modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their separation, velocity and the polytropic index in the EOS. In this way they could observe a critical phenomenon of type I near the threshold of black-hole formation, with the putative solution being a nonlinearly oscillating star. In a successive work, they performed similar simulations but considering the head-on collision of Gaussian distributions of matter. Also in this case they found the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial distributions of matter and of the merged object. Because of the considerable difference found in the eigenfrequencies in the two cases, they concluded that the critical solution does not represent a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV) solution. In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a setup which is as similar as possible to the one considered above. While we confirm that the merged object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy with what is found in, the critical solution is effectively a perturbed unstable solution of the TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context of scalar-field critical collapse. N2 - Diese Arbeit legt seinen Schwerpunkt auf die Physik von Neutronensternen und deren Beschreibung mit Methoden der numerischen Relativitätstheorie. Im ersten Schritt wird eine neue numerische Umgebung, der Whisky2D Code entwickelt, dieser löst die relativistischen Gleichungen der Hydrodynamik in Axialymmetrie. Hierzu betrachten wir eine verbesserte Formulierung der sog. "flux conserved formulation" der Gleichungen. Im zweiten Teil wird der neue Code verwendet , um das kritische Verhalten zweier kollidierenden Neutronensternen zu untersuchen. In Anbetracht der Analogie, um Übergänge in der statistischen Physik Phase werden wir die Entwicklung der Entropie der Neutronensterne während des gesamten Prozesses betrachten. Ein besseres Verständnis der Evolution von thermodynamischen Größen, wie der Entropie in kritischer Prozess, sollte zu einem tieferen Verständnis der relativistischen Thermodynamik führen. Der Whisky2D Code, zur Lösung Gleichungen relativistischer Hydrodynamik wurde in einer „flux conserved form“ und in zylindrischen Koordinaten geschrieben. Hierdurch entstehen 1 / r singuläre Terme, wobei r der ist, die entsprechend behandelt werden müssen. In früheren Arbeiten, wird der Operator expandiert und die 1 / r spezifisch Therme auf die rechte Seite geschrieben, so dass die linke Seite eine Form annimmt, die identisch ist mit der kartesischen Formulierung. Wir nennen dies die Standard-Formulierung. Eine andere Möglichkeit ist, die Terme nicht zu expandieren, den und den 1/r Term in die Gleichung hinein zu ziehen. Wir nennen dies die Neue-Formulierung. Die neuen Gleichungen werden mit den gleichen Verfahren wie im kartesischen Fall gelöst. Aus mathematischer Sicht ist keine Unterschiede zwischen den beiden Formulierungen zu erwarten, erst die numerische Sicht zeigt die Unterschiede auf. Versuche zeigen, dass die Neue-Formulierung numerische Fehler um mehrere Größenordnungen reduziert. Der zweite Teil der Dissertation verwendet den neuen Code für die Untersuchung kritischer Phänomene in der allgemeinen Relativitätstheorie. Insbesondere betrachten wir die Kopf-auf-Kollision zweier Neutronensterne in einem Bereich des Parameter Raums, deren zwei mögliche Endzustände entweder einen neuen stabilen Neutronenstern oder ein Schwarzes Loch darstellen. Im Jahr 1993, betrachtete Choptuik Ein-Parameter-Familien von Lösungen, S [P], der Einstein-Klein-Gordon-Gleichung für ein masseloses Skalarfeld in sphärischer Symmetrie, so dass für jedes P> P ⋆, S[P] ein Schwarzes Loch enthalten ist und jedes P