TY - JOUR A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells JF - Solar RRL N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - https://doi.org/10.1002/solr.202000649 SN - 2367-198X VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1384 KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570018 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Sini, Gjergji A1 - Schubert, Marcel A1 - Risko, Chad A1 - Roland, Steffen A1 - Lee, Olivia P. A1 - Chen, Zhihua A1 - Richter, Thomas V. A1 - Dolfen, Daniel A1 - Coropceanu, Veaceslav A1 - Ludwigs, Sabine A1 - Scherf, Ullrich A1 - Facchetti, Antonio A1 - Frechet, Jean M. J. A1 - Neher, Dieter T1 - On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface JF - Advanced energy materials N2 - Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules. KW - donor-acceptor interfaces KW - energy gradients KW - geometrical deformations KW - nonfullerene acceptors KW - organic photovoltaics KW - photocurrent generation KW - polymer solar cells Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702232 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 12 PB - Wiley-VCH CY - Weinheim ER -