TY - THES A1 - Breitenstein, Michael T1 - Ortsaufgelöster Aufbau von DNA-Nanostrukturen auf Glasoberflächen T1 - Assembly of DNA nanostructures on glass surfaces N2 - Im Fokus dieser Arbeit stand der Aufbau einer auf DNA basierenden Nanostruktur. Der universelle Vier-Buchstaben-Code der DNA ermöglicht es, Bindungen auf molekularer Ebene zu adressieren. Die chemischen und physikalischen Eigenschaften der DNA prädestinieren dieses Makromolekül für den Einsatz und die Verwendung als Konstruktionselement zum Aufbau von Nanostrukturen. Das Ziel dieser Arbeit war das Aufspannen eines DNA-Stranges zwischen zwei Fixpunkten. Hierfür war es notwendig, eine Methode zu entwickeln, welche es ermöglicht, Funktionsmoleküle als Ankerelemente ortsaufgelöst auf eine Oberfläche zu deponieren. Das Deponieren dieser Moleküle sollte dabei im unteren Mikrometermaßstab erfolgen, um den Abmaßen der DNA und der angestrebten Nanostruktur gerecht zu werden. Das eigens für diese Aufgabe entwickelte Verfahren zum ortsaufgelösten Deponieren von Funktionsmolekülen nutzt das Bindungspaar Biotin-Neutravidin. Mit Hilfe eines Rasterkraftmikroskops (AFM) wurde eine zu einem „Stift“ umfunktionierte Rasterkraftmikroskopspitze so mit der zu deponierenden „Tinte“ beladen, dass das Absetzen von Neutravidin im unteren Mikrometermaßstab möglich war. Dieses Neutravidinmolekül übernahm die Funktion als Bindeglied zwischen der biotinylierten Glasoberfläche und dem eigentlichen Adressmolekül. Das somit generierte Neutravidin-Feld konnte dann mit einem biotinylierten Adressmolekül durch Inkubation funktionalisiert werden. Namensgebend für dieses Verfahren war die Möglichkeit, Neutravidin mehrmals zu deponieren und zu adressieren. Somit ließ sich sequenziell ein Mehrkomponenten-Feld aufbauen. Die Einschränkung, mit einem AFM nur eine Substanz deponieren zu können, wurde so umgangen. Ferner mußten Ankerelemente geschaffen werden, um die DNA an definierten Punkten immobilisieren zu können. Die Bearbeitung der DNA erfolgte mit molekularbiologischen Methoden und zielte darauf ab, einen DNA-Strang zu generieren, welcher an seinen beiden Enden komplementäre Adressequenzen enthält, um gezielt mit den oberflächenständigen Ankerelementen binden zu können. Entsprechend der Geometrie der mit dem AFM erzeugten Fixpunkte und den oligonukleotidvermittelten Adressen kommt es zur Ausbildung einer definierten DNA-Struktur. Mit Hilfe von fluoreszenzmikroskopischen Methoden wurde die aufgebaute DNA-Nanostruktur nachgewiesen. Der Nachweis der nanoskaligen Interaktion von DNA-bindenden Molekülen mit der generierten DNA-Struktur wurde durch die Bindung von PNA (peptide nucleic acid) an den DNA-Doppelstrang erbracht. Diese PNA-Bindung stellt ihrerseits ein funktionales Strukturelement im Nanometermaßstab dar und wird als Nanostrukturbaustein verstanden. N2 - The main aim of this work was the development of a DNA-based nanostructure. The universal four-letter code of DNA allows addressing bonds at the molecular level. The chemical and physical property of DNA makes this macromolecule an ideal candidate as a construction element for nanostructures. The aim of this work was to span a DNA strand between two fixed points. For this purpose it was necessary to develop a method which makes it possible to deposit functional molecules as anchoring elements with highly spatial resolution on a surface. These molecules should be immobilized on the lower micrometer scale to meet the requirements of the desired nanostructure. The method that has been developed for this task, which enables to deposit functional molecules, uses the binding pair biotin-neutravidin. Using the tip of an atomic force microscope (AFM), which can be uses like a pen, it was possible to deposit neutravidin on the lower micrometer scale. This neutravidin molecule is the linking element between the biotinylated glass surface and the actual address molecule. The thus generated neutravidin field could then be functionalized with a biotinylated molecule by incubation. The method has been published as sequential spotting method because it enables a sequential functionalization of neutravidin after it has been deposited. It was so possible to build up a multi-component array. The limitation of being able to deposit only one single substance with an AFM has been circumvented. It also was necessary to create anchor elements in order to immobilize the DNA at defined positions. The processing of the DNA was carried out using molecular biological methods and aimed at generating a DNA strand, which at both ends has a complementary sequence for binding to the surface bound anchor elements. The defined structure is a result of the geometry of the fixed points, generated by the AFM. Using fluorescence microscopy, the constructed DNA nanostructure was detected. The proof of the interaction of DNA-binding molecules with the DNA structure was carried out by the binding of PNA (peptide nucleic acid), which is capable of binding to double stranded DNA. The PNA and its DNA-interaction is a functional building block in the nanometer scale and can be regarded as a promising nanostructure. KW - Nanostruktur KW - DNA KW - Rasterkraftmikroskop KW - Fluoreszenzmikroskopie KW - Oberflächenfunktionalisierung KW - nanostructure KW - DNA KW - atomic force microscope KW - fluorescence microscopy KW - surface chemistry Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61857 ER - TY - THES A1 - Hentschel, Jens T1 - Synthese und kontrollierte Mikrostrukturbildung funktionaler Peptid-Polymerkonjugate in organischen Lösungsmitteln T1 - Synthesis and controlled microstructure formation of functional peptide-polymer conjugates in organic media N2 - In der vorliegenden Arbeit wurde ein Ansatz verfolgt, die besonderen Eigenschaften der Strukturbildung sequenzdefinierter Peptide mit den vielseitigen Materialeigenschaften synthetischer Blockcopolymere zu kombinieren. Dazu wurde ein synthetisches Polymer kovalent mit einer definierten Peptidsequenz verknüpft. Der Peptidblock (die Organisationseinheit) wurde speziell designt, um später die Strukturbildung des Peptid-Polymerkonjugates induzieren und leiten zu können. Als Organisationsmotiv diente hierbei das aus der Natur bekannte β-Faltblatt Strukturmotiv. Das Peptidsegment wurde in einer festphasengebundenen Synthese aufgebaut. Dabei wurden temporäre Stör-Segmente (Switch-Segmente) in die Peptidsequenz integriert. Diese Segmente unterdrücken die Aggregationstendenz während der Synthese und können durch einen pH-abhängigen Schaltvorgang in das natürliche Peptidrückgrat überführt werden. Zusätzlich zu der verbesserten Ausbeute und Reinheit der entsprechenden Peptide war auf diese Weise eine kontrollierte Aktivierung der Mikrostrukturbildung möglich. Mit Hilfe zwei verschiedener Synthesestrategien (Kupplungs- bzw. Polymerisationsstrategie) wurde ein Satz von definierten Peptid-Polymerkonjugaten mit unterschiedlich großen Polymersegmenten synthetisiert. Diese wurden anschließend im Hinblick auf ihre Strukturbildungseigenschaften in organischen Lösungsmitteln untersucht. Durch mikroskopische Verfahren (AFM, TEM), konnte für alle Konjugate, die Bildung faserartiger Aggregate mit Dimensionen im Nano- bis Mikrometerbereich beobachtet werden. Genauere Untersuchungen zeigten, dass die Peptidsegmente in diesen Faserstrukturen ein β-Faltblatt ausbilden. Dies ist ein deutlicher Hinweis darauf, dass die Strukturbildung der Konjugate tatsächlich durch den Peptidblock gesteuert und kontrolliert wurde. N2 - The aim of this work was to combine the particular structuring properties of sequence-defined peptides with the versatile material properties of synthetic block-copolymers. Therefor, synthetic polymers were linked covalently to a defined oligopeptide-sequence using varying synthetic approaches. The oligopeptide was designed to guide and control the microstructure formation of the peptide-polymer conjugate. For this reason a peptide sequence with a high propensity to adopt the β-sheet motif was chosen. Thus, highly attractive, anisometric tape, fibrillar or fibre-like nanostructures can be accessed. However, such peptide-sequences are very difficult to synthesize and handle, as a result of their strong aggregation tendency. Therefore, temporary structure breaking units, so called switch-segments, were integrated into the peptide sequence, disturbing the peptide backbone and thus, temporarily suppressing the peptide properties. The controlled rearrangement of these defects reestablishes the native peptide backbone, switching the aggregation tendency of the peptide segment on, and triggers the assembly process. A set of defined peptide-polymer conjugates with different polymer block-lengths was synthesized either by an coupling approach or by RAFT polymerization using a switch-peptide macro chain transfer agent. Afterwards, the structure formation properties of these conjugates were investigated. By the use of microscopic techniques (AFM, TEM), the formation of densely twisted tape-like microstructures was observed for all conjugates. The formation of extended β-sheets was confirmed by different techniques (FT-IR, TEM-SAED), indicating a peptide guided microstructure formation process. Thus, it could be demonstrated that the peptide guided organization of synthetic polymers can be successfully transferred into organic solvents. KW - Peptid KW - Polymer KW - Strukturbildung KW - RAFT KW - peptide KW - polymer KW - switch KW - RAFT KW - nanostructure Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-19840 ER - TY - JOUR A1 - Izraylit, Victor A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Investigating the phase-morphology of PLLA-PCL multiblock copolymer/PDLA blends cross-linked using stereocomplexation JF - MRS advances N2 - The macroscale function of multicomponent polymeric materials is dependent on their phase-morphology. Here, we investigate the morphological structure of a multiblock copolymer consisting of poly(L-lactide) and poly(epsilon-caprolactone) segments (PLLA-PCL), physically cross-linked by stereocomplexation with a low molecular weight poly(D-lactide) oligomer (PDLA). The effects of blend composition and PLLA-PCL molecular structure on the morphology are elucidated by AFM, TEM and SAXS. We identify the formation of a lattice pattern, composed of PLA domains within a PCL matrix, with an average domain spacing d0 = 12 - 19 nm. The size of the PLA domains were found to be proportional to the block length of the PCL segment of the copolymer and inversely proportional to the PDLA content of the blend. Changing the PLLA-PCL / PDLA ratio caused a shift in the melt transition Tm attributed to the PLA stereocomplex crystallites, indicating partial amorphous phase dilution of the PLA and PCL components within the semicrystalline material. By elucidating the phase structure and thermal character of multifunctional PLLA-PCL / PDLA blends, we illustrate how composition affects the internal structure and thermal properties of multicomponent polymeric materials. This study should facilitate the more effective incorporation of a variety of polymeric structural units capable of stimuli responsive phase transitions, where an understanding the phase-morphology of each component will enable the production of multifunctional soft-actuators with enhanced performance. KW - polymer KW - blend KW - nanostructure KW - morphology Y1 - 2020 U6 - https://doi.org/10.1557/adv.2019.465 SN - 2059-8521 VL - 5 IS - 14-15 SP - 699 EP - 707 PB - Cambridge Univ. Press CY - New York ER - TY - THES A1 - Möser, Christin T1 - Modular DNA constructs for oligovalent bio-enhancement and functional screening T1 - Modulare DNA-Konstrukte für oligovalente Bio-Verstärkung und funktionelles Screening N2 - Deoxyribonucleic acid (DNA) nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. This dissertation covers three main projects. All of them use variations of functionalized DNA nanostructures that act as platform for oligovalent presentation of ligands. The purpose of this work was to evaluate the ability of DNA nanostructures to precisely display different types of functional molecules and to consequently enhance their efficacy according to the concept of multivalency. Moreover, functionalized DNA structures were examined for their suitability in functional screening assays. The developed DNA-based compound ligands were used to target structures in different biological systems. One part of this dissertation attempted to bind pathogens with small modified DNA nanostructures. Pathogens like viruses and bacteria are known for their multivalent attachment to host cells membranes. By blocking their receptors for recognition and/or fusion with their targeted host in an oligovalent manner, the objective was to impede their ability to adhere to and invade cells. For influenza A, only enhanced binding of oligovalent peptide-DNA constructs compared to the monovalent peptide could be observed, whereas in the case of respiratory syncytial virus (RSV), binding as well as blocking of the target receptors led to an increased inhibition of infection in vitro. In the final part, the ability of chimeric DNA-peptide constructs to bind to and activate signaling receptors on the surface of cells was investigated. Specific binding of DNA trimers, conjugated with up to three peptides, to EphA2 receptor expressing cells was evaluated in flow cytometry experiments. Subsequently, their ability to activate these receptors via phosphorylation was assessed. EphA2 phosphorylation was significantly increased by DNA trimers carrying three peptides compared to monovalent peptide. As a result of activation, cells underwent characteristic morphological changes, where they "round up" and retract their periphery. The results obtained in this work comprehensively prove the capability of DNA nanostructures to serve as stable, biocompatible, controllable platforms for the oligovalent presentation of functional ligands. Functionalized DNA nanostructures were used to enhance biological effects and as tool for functional screening of bio-activity. This work demonstrates that modified DNA structures have the potential to improve drug development and to unravel the activation of signaling pathways. N2 - Desoxyribonukleinsäure (DNS, engl. DNA) - Nanostrukturen ermöglichen die Anbringung funktioneller Moleküle an nahezu jede einzigartige Stelle der zugrunde liegenden Struktur. Aufgrund der Basenpaar-Strukturauflösung von DNA können mehrere Moleküle (z.B. Liganden) entsprechend der Geometrie ihres gewünschten Ziels räumlich angeordnet und genau kontrolliert werden, was zu optimierten Bindungs- und/oder Signalwechselwirkungen führt. Diese Dissertation umfasst drei Hauptprojekte. Alle Projekte verwenden Varianten von funktionalisierten DNA-Nanostrukturen, die als Plattform für die oligovalente Präsentation von Liganden dienen. Ziel der vorliegenden Arbeit war es, die Fähigkeit von DNA-Nanostrukturen zur präzisen Positionierung verschiedener Arten von funktionellen Molekülen zu evaluieren und folglich die Wirksamkeit der Moleküle gemäß dem Konzept der Multivalenz zu erhöhen. Außerdem wurde untersucht, wie funktionalisierte DNA-Strukturen in verschiedenen Verfahren zur Erforschung von biologischen Interaktionen eingesetzt werden können. Die entwickelten DNA-basierten Liganden wurden verwendet, um Strukturen auf verschiedenen biologischen Systemen gezielt zu binden. In einem Teil dieser Dissertation wurde versucht, Krankheitserreger mit kleinen modifizierten DNA-Nanostrukturen zu binden. Pathogene, wie Viren und Bakterien, sind für ihre multivalente Anheftung an Wirtszellmembranen bekannt. Durch die oligovalente Blockierung ihrer Rezeptoren für die Erkennung und/oder Fusion mit ihrem Wirt sollte ihre Fähigkeit, sich an Zielzellen anzuheften und in diese einzudringen, beeinträchtigt werden. Bei Influenza A Viren konnte nur eine verstärkte Bindung von oligovalenten Peptid-DNA-Konstrukten im Vergleich zu monovalenten Peptiden beobachtet werden, wohingegen bei Respiratorischen Synzytial-Viren (RSV) sowohl die Bindung als auch die Blockierung der Zielrezeptoren zu einer verstärkten Hemmung der Infektion in vitro führte. Im letzten Teil wurden chimäre DNA-Peptidkonstrukte auf ihre Fähigkeit, an Signalrezeptoren auf der Oberfläche von Zellen zu binden und diese zu aktivieren, getestet. Die spezifische Bindung von mit bis zu drei Peptiden konjugierten DNA-Trimeren an EphA2-Rezeptor-exprimierende Zellen wurde in Durchflusszytometrie-Experimenten untersucht. Anschließend wurde ihre Fähigkeit, diese Rezeptoren durch Phosphorylierung zu aktivieren, beurteilt. Die Phosphorylierung von EphA2 war durch DNA-Trimere, die drei Peptide trugen, im Vergleich zu monovalenten Peptiden signifikant erhöht. Infolge der Aktivierung kommt es zu charakteristischen morphologischen Veränderungen der Zellen, bei denen diese ihre Peripherie "abrunden" und zurückziehen. Die in dieser Arbeit erzielten Ergebnisse beweisen umfassend die Fähigkeit von DNA-Nanostrukturen, als stabile, biokompatible, kontrollierbare Plattformen für die oligovalente Präsentation funktioneller Liganden zu fungieren. Funktionalisierte DNA-Nanostrukturen wurden zur Verstärkung biologischer Effekte und als Werkzeug für das funktionelle Screening von biologischen Interaktionen verwendet. Diese Arbeit zeigt, dass modifizierte DNA-Strukturen das Potenzial haben, die Medikamentenentwicklung zu verbessern und die Aktivierung von Signalwegen zu entschlüsseln. KW - DNA KW - multivalency KW - influenza KW - respiratory syncytial virus KW - nanostructure KW - ephrin KW - DNA KW - Ephrin KW - Influenza KW - Multivalenz KW - Nanostruktur KW - Respiratorisches Synzytial-Virus KW - DNS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-507289 ER - TY - THES A1 - Rader, Oliver T1 - Electron quantization and localization in metal films and nanostructures N2 - Es ist seit einigen Jahren bekannt, dass Elektronen unter bestimmten Bedingungen in dünne Filme eingeschlossen werden können, selbst wenn diese Filme aus Metall bestehen und auf Metall-Substrat aufgebracht werden. In Photoelektronenspektren zeigen diese Filme charakteristische diskrete Energieniveaus, und es hat sich herausgestellt, dass sie zu großen, technisch nutzbaren Effekten führen können, wie der oszillatorischen magnetischen Kopplung in modernen Festplatten-Leseköpfen. In dieser Arbeit wird untersucht, inwieweit die der Quantisierung in zweidimensionalen Filmen zu Grunde liegenden Konzepte auf niedrigere Dimensionalität übertragbar sind. Das bedeutet, dass schrittweise von zweidimensionalen Filmen auf eindimensionale Nanostrukturen übergegangen wird. Diese Nanostrukturen sind zum einen die Terrassen auf atomar gestuften Oberflächen, aber auch Atomketten, die auf diese Terrassen aufgebracht werden, bis hin zu einer vollständigen Bedeckung mit atomar dünnen Nanostreifen. Daneben werden Selbstorganisationseffekte ausgenutzt, um zu perfekt eindimensionalen Atomanordnungen auf Oberflächen zu gelangen. Die winkelaufgelöste Photoemission ist als Untersuchungsmethode deshalb so geeignet, weil sie das Verhalten der Elektronen in diesen Nanostrukturen in Abhängigkeit von der Raumrichtung zeigt, und unterscheidet sich darin beispielsweise von der Rastertunnelmikroskopie. Damit ist es möglich, deutliche und manchmal überraschend große Effekte der eindimensionalen Quantisierung bei verschiedenen exemplarischen Systemen zum Teil erstmals nachzuweisen. Die für zweidimensionale Filme wesentliche Rolle von Bandlücken im Substrat wird für Nanostrukturen bestätigt. Hinzu kommt jedoch eine bei zweidimensionalen Filmen nicht vorhandene Ambivalenz zwischen räumlicher Einschränkung der Elektronen in den Nanostrukturen und dem Effekt eines Übergitters aus Nanostrukturen sowie zwischen Effekten des Elektronenverhaltens in der Probe und solchen des Messprozesses. Letztere sind sehr groß und können die Photoemissionsspektren dominieren. Abschließend wird der Effekt der verminderten Dimensionalität speziell für die d-Elektronen von Mangan untersucht, die zusätzlich starken Wechselwirkungseffekten unterliegen. Auch hierbei treten überraschende Ergebnisse zu Tage. N2 - It has been known for several years that under certain conditions electrons can be confined within thin layers even if these layers consist of metal and are supported by a metal substrate. In photoelectron spectra, these layers show characteristic discrete energy levels and it has turned out that these lead to large effects like the oscillatory magnetic coupling technically exploited in modern hard disk reading heads. The current work asks in how far the concepts underlying quantization in two-dimensional films can be transferred to lower dimensionality. This problem is approached by a stepwise transition from two-dimensional layers to one-dimensional nanostructures. On the one hand, these nanostructures are represented by terraces on atomically stepped surfaces, on the other hand by atom chains which are deposited onto these terraces up to complete coverage by atomically thin nanostripes. Furthermore, self organization effects are used in order to arrive at perfectly one-dimensional atomic arrangements at surfaces. Angle-resolved photoemission is particularly suited as method of investigation because is reveals the behavior of the electrons in these nanostructures in dependence of the spacial direction which distinguishes it from, e. g., scanning tunneling microscopy. With this method intense and at times surprisingly large effects of one-dimensional quantization are observed for various exemplary systems, partly for the first time. The essential role of bandgaps in the substrate known from two-dimensional systems is confirmed for nanostructures. In addition, we reveal an ambiguity without precedent in two-dimensional layers between spacial confinement of electrons on the one side and superlattice effects on the other side as well as between effects caused by the sample and by the measurement process. The latter effects are huge and can dominate the photoelectron spectra. Finally, the effects of reduced dimensionality are studied in particular for the d electrons of manganese which are additionally affected by strong correlation effects. Surprising results are also obtained here. ---------------------------- Die Links zur jeweiligen Source der im Appendix beigefügten Veröffentlichungen befinden sich auf Seite 83 des Volltextes. T2 - Electron quantization and localization in metal films and nanostructures KW - elektronische Struktur KW - elektronische Eigenschaften KW - Dispersion KW - reduzierte Dimensionalität KW - Oberfläche KW - Nanostruktur KW - Quantendraht KW - Terrasse ... KW - electronic structure KW - electronic properties KW - dispersion KW - reduced dimensionality KW - 1D KW - 2D KW - surface KW - nanostructure KW - quantum wire KW - terrace ... Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001912 ER - TY - THES A1 - Schick, Daniel T1 - Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes T1 - Ultraschnelle Gitterdynamik in optisch angeregten Nanostrukturen : Femtosekunden-Röntgendiffraktion mit optimierten Auswerteroutinen N2 - Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects. N2 - Im Rahmen dieser Arbeit habe ich mich mit den komplexen Wechselwirkungen zwischen Elektronen- und Gitterdynamik in oxidischen Perowskit-Nanostrukturen beschäftigt. Dazu wurden verschiedene Proben mit intensiven, ultrakurzen Laserpulsen angeregt. Um die zeitliche Entwicklung der induzierten atomaren Umordnung zu untersuchen, wurden Femtosekunden-Pulse harter Röntgenstrahlung genutzt. Zunächst wurde die ultraschnelle Gitterdynamik in einfachen Modellsystemen mit zeitaufgelösten Röntgendiffraktionsexperimenten untersucht, um im Anschluss ähnliche Experimente an komplexeren Materialien mit mehreren Freiheitsgraden interpretieren zu können. Die Bewegung der Atome in einem Kristall kann über Anrege-Abtast-Verfahren direkt mit gepulster, harter Röntgenstrahlung gemessen werden. Die Dauer der Röntgenpulse muss dafür einige hundert Femtosekunden kurz sein. Um diese ultrakurzen Röntgenpulse zu erzeugen, habe ich eine lasergetriebene Plasma-Röntgenquelle aufgebaut. Der Aufbau wurde um ein stabiles Goniometer, einen zweidimensionalen Röntgendetektor und einen kryogenfreien Kryostat erweitert und in Bezug auf das Signal-zu-Rausch-Verhältnis und die Winkelauflösung optimiert. Durch die Entwicklung einer schnellen Methode zur Vermessung des reziproken Raums konnte erstmals an solch einer Quelle eine zweidimensionale Strukturanalyse mit Femtosekunden-Zeitauflösung realisiert werden. Die Anregung und Ausbreitung von kohärenten Phononen habe ich in optisch angeregten Dünnfilm- und Übergitterstrukturen untersucht. Eine entscheidende Rolle spielen dabei metallische SrRuO3 Schichten. Durch die quasi-instantane Kopplung des Gitters an die optisch angeregten Elektronen in SrRuO3 wird ein räumlich und zeitlich wohldefiniertes Druckprofil erzeugt. Dadurch kann der Einfluss der resultierenden kohärenten Gitterdynamik auf die zeitaufgelösten Röntgendiffraktionsdaten im Detail verstanden werden. Beobachtet wurde z.B. das Auftreten einer transienten Aufspaltung eines Bragg-Reflexes bei Dünnfilm- und Übergitterstrukturen aus SrRuO3. Außerdem wurde eine umfangreiche Simulationsumgebung entwickelt, mit deren Hilfe die ultraschnelle Dynamik und die dazugehörigen Röntgendiffraktionssignale in optisch angeregten eindimensionalen Kristallstrukturen berechnet werden können. Der von mir entwickelte experimentelle Aufbau sowie das Simulationspaket zur Datenanalyse und -interpretation wurden anschließend für die Untersuchung kohärenter Phononen in komplexeren Materialsystemen eingesetzt. Im Speziellen konnte ich in multiferroischem BiFeO3 eine stark lokalisierte Ladungsträgerverteilung nach einer optischen Femtosekunden-Anregung nachweisen. Sie ist die Ursache für einen quasi-instantanen und räumlich inhomogenen Druck, der die kohärenten Phononen in einem dünnen Film dieses Multiferroikums erzeugt. Außerdem habe ich die ultraschnelle Vermessung des reziproken Raums angewendet, um eine verzerrungsinduzierte Veränderung der Mosaizität in einem strukturell unvollkommenen Film aus ferroelektrischem Pb(Zr0.2Ti0.8)O3 zu verfolgen. Die Ergebnisse deuten auf eine ausschließlich durch strukturelle Defekte vermittelte Kopplung der atomaren Bewegungen parallel und senkrecht zur Flächennormalen des Filmes hin. KW - ultraschnelle Röntgendiffraktion KW - Gitterdynamik KW - Nanostruktur KW - optische Anregung KW - Perowskit KW - ultrafast X-ray diffraction KW - lattice dynamics KW - nanostructure KW - photoexcitation KW - perovskite Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-68827 ER - TY - THES A1 - Yin, Chunhong T1 - The interplay of nanostructure and efficiency of polymer solar cells T1 - Einfluss der Nanostruktur auf die Effizienz von Polymer-Solarzellen N2 - The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: all-polymer solar cells comprising macromolecular donors and acceptors based on poly(p-phenylene vinylene) and hybrid cells comprising a PPV copolymer in combination with a novel small molecule electron acceptor. To understand the interplay between morphology and photovoltaic properties in all-polymer devices, I compared the photocurrent characteristics and excited state properties of bilayer and blend devices with different nano-morphology, which was fine tuned by using solvents with different boiling points. The main conclusion from these complementary measurements was that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. These findings imply that the proper design of the donor-acceptor heterojunction is of major importance towards the goal of high photovoltaic efficiencies. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel Vinazene-based electron acceptor. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V could be achieved by realizing a sharp and well-defined donor-acceptor heterojunction. In the past, fill factors exceeding 50 % have only been observed for polymers in combination with soluble fullerene-derivatives or nanocrystalline inorganic semiconductors as the electron-accepting component. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. N2 - Ziel dieser Dissertation ist es, die grundlegende Arbeitsweise von polymerbasierten Solarzellen zu verstehen und ihre Leistungsfähigkeit zu erhöhen. Zwei Arten von organischen Solarzellen werden untersucht: Solarzellen, bei denen sowohl Elektronendonator und akzeptor auf Poly(p-phenylen-vinylen) basieren sowie Zellen, bei denen ein PPV-Copolymer als Elektronendonator und organische kleine Moleküle als Elektronenakzeptor fungierten. Um die Zusammenhänge zwischen Morphologie und photovoltaischen Eigenschaften zu verstehen, untersuchte ich Photoströme sowie die Eigenschaften angeregter Zustände in Zweischicht- und Mischsolarzellen mit unterschiedlicher Nano-Morphologie, welche durch die Verwendung von Lösungsmitteln mit unterschiedlichen Siedetemperaturen modifiziert wurde. Die Hauptschlussfolgerung aus diesen Messungen ist, dass der effizienzlimitierende Faktor die feldabhängige Generation freier Ladungsträger ist, wohingegen bimolekulare Rekombination oder die Extraktion der Ladungsträger die Leistungsfähigkeit von Polymer-Polymer- Solarzellen nicht beeinträchtigen. Diese Ergebnisse legen nahe, dass die gezielte Einstellung der Donator-Akzeptor-Grenzfläche von besonderer Bedeutung zum Erreichen hoher Effizienzen ist. In Hybridsolarzellen aus Polymeren und kleinen Molekülen kombinierte ich das lochleitende konjugierte Polymer M3EH-PPV mit einem neuartigen Vinazen-Molekül als Elektronen-akzeptor. Dieses Molekül bietet die Möglichkeit, entweder aus einer Lösung heraus verarbeitet oder im Hochvakuum verdampft zu werden, wodurch eine Vielzahl an unterschiedlichen Probenstrukturen realisiert werden kann. Dadurch konnte ich zeigen, dass die Struktur der aktiven Schicht einen großen Einfluss auf die photovoltaischen Eigenschaften hat. Die Solarzellen erreichten einen Füllfaktor von bis zu 57% und eine Kurzschluss¬spannung von 1 V. In der Vergangenheit konnten bei polymerbasierten Solarzellen Füllfaktoren über 50% nur in Verbindung mit Fullerenen oder nanokristallinen anorganischen Halbleitern als Akzeptoren erreicht werden. Das Resultat, dass bei geeigneter Präparation der Polymer-Vinazen-Schicht vergleichbare Ergebnisse erzielt werden können, ist ein bedeutender Schritt hin zu effizienteren Polymersolarzellen. KW - Nanostruktur KW - Polymer-Solarzelle KW - Effizienz KW - Morphologie KW - Polymer solar cells KW - nanostructure KW - efficiency KW - morphology Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29054 ER -