TY - JOUR A1 - Hannemann, Mandy A1 - Wegner, Gino A1 - Henkel, Carsten T1 - No-slip boundary conditions for electron hydrodynamics and the thermal Casimir pressure JF - Universe : open access journal N2 - We derive modified reflection coefficients for electromagnetic waves in the THz and far infrared range. The idea is based on hydrodynamic boundary conditions for metallic conduction electrons. The temperature-dependent part of the Casimir pressure between metal plates is evaluated. The results should shed light on the "thermal anomaly," where measurements deviate from the standard fluctuation electrodynamics for conducting metals. KW - dispersion force KW - metal optics KW - Drude model KW - hydrodynamic model KW - spatial KW - dispersion KW - viscosity KW - non-contact heat transfer Y1 - 2021 U6 - https://doi.org/10.3390/universe7040108 SN - 2218-1997 VL - 7 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Megow, Jörg T1 - How Van der Waals Interactions Influence the Absorption Spectra of Pheophorbide a Complexes: A Mixed Quantum-Classical Study JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates. KW - dispersion KW - electrostatic interactions KW - mixed quantum-classical methodology KW - optical spectra KW - supramolecular chemistry Y1 - 2015 U6 - https://doi.org/10.1002/cphc.201500326 SN - 1439-4235 SN - 1439-7641 VL - 16 IS - 14 SP - 3101 EP - 3107 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Rader, Oliver T1 - Electron quantization and localization in metal films and nanostructures N2 - Es ist seit einigen Jahren bekannt, dass Elektronen unter bestimmten Bedingungen in dünne Filme eingeschlossen werden können, selbst wenn diese Filme aus Metall bestehen und auf Metall-Substrat aufgebracht werden. In Photoelektronenspektren zeigen diese Filme charakteristische diskrete Energieniveaus, und es hat sich herausgestellt, dass sie zu großen, technisch nutzbaren Effekten führen können, wie der oszillatorischen magnetischen Kopplung in modernen Festplatten-Leseköpfen. In dieser Arbeit wird untersucht, inwieweit die der Quantisierung in zweidimensionalen Filmen zu Grunde liegenden Konzepte auf niedrigere Dimensionalität übertragbar sind. Das bedeutet, dass schrittweise von zweidimensionalen Filmen auf eindimensionale Nanostrukturen übergegangen wird. Diese Nanostrukturen sind zum einen die Terrassen auf atomar gestuften Oberflächen, aber auch Atomketten, die auf diese Terrassen aufgebracht werden, bis hin zu einer vollständigen Bedeckung mit atomar dünnen Nanostreifen. Daneben werden Selbstorganisationseffekte ausgenutzt, um zu perfekt eindimensionalen Atomanordnungen auf Oberflächen zu gelangen. Die winkelaufgelöste Photoemission ist als Untersuchungsmethode deshalb so geeignet, weil sie das Verhalten der Elektronen in diesen Nanostrukturen in Abhängigkeit von der Raumrichtung zeigt, und unterscheidet sich darin beispielsweise von der Rastertunnelmikroskopie. Damit ist es möglich, deutliche und manchmal überraschend große Effekte der eindimensionalen Quantisierung bei verschiedenen exemplarischen Systemen zum Teil erstmals nachzuweisen. Die für zweidimensionale Filme wesentliche Rolle von Bandlücken im Substrat wird für Nanostrukturen bestätigt. Hinzu kommt jedoch eine bei zweidimensionalen Filmen nicht vorhandene Ambivalenz zwischen räumlicher Einschränkung der Elektronen in den Nanostrukturen und dem Effekt eines Übergitters aus Nanostrukturen sowie zwischen Effekten des Elektronenverhaltens in der Probe und solchen des Messprozesses. Letztere sind sehr groß und können die Photoemissionsspektren dominieren. Abschließend wird der Effekt der verminderten Dimensionalität speziell für die d-Elektronen von Mangan untersucht, die zusätzlich starken Wechselwirkungseffekten unterliegen. Auch hierbei treten überraschende Ergebnisse zu Tage. N2 - It has been known for several years that under certain conditions electrons can be confined within thin layers even if these layers consist of metal and are supported by a metal substrate. In photoelectron spectra, these layers show characteristic discrete energy levels and it has turned out that these lead to large effects like the oscillatory magnetic coupling technically exploited in modern hard disk reading heads. The current work asks in how far the concepts underlying quantization in two-dimensional films can be transferred to lower dimensionality. This problem is approached by a stepwise transition from two-dimensional layers to one-dimensional nanostructures. On the one hand, these nanostructures are represented by terraces on atomically stepped surfaces, on the other hand by atom chains which are deposited onto these terraces up to complete coverage by atomically thin nanostripes. Furthermore, self organization effects are used in order to arrive at perfectly one-dimensional atomic arrangements at surfaces. Angle-resolved photoemission is particularly suited as method of investigation because is reveals the behavior of the electrons in these nanostructures in dependence of the spacial direction which distinguishes it from, e. g., scanning tunneling microscopy. With this method intense and at times surprisingly large effects of one-dimensional quantization are observed for various exemplary systems, partly for the first time. The essential role of bandgaps in the substrate known from two-dimensional systems is confirmed for nanostructures. In addition, we reveal an ambiguity without precedent in two-dimensional layers between spacial confinement of electrons on the one side and superlattice effects on the other side as well as between effects caused by the sample and by the measurement process. The latter effects are huge and can dominate the photoelectron spectra. Finally, the effects of reduced dimensionality are studied in particular for the d electrons of manganese which are additionally affected by strong correlation effects. Surprising results are also obtained here. ---------------------------- Die Links zur jeweiligen Source der im Appendix beigefügten Veröffentlichungen befinden sich auf Seite 83 des Volltextes. T2 - Electron quantization and localization in metal films and nanostructures KW - elektronische Struktur KW - elektronische Eigenschaften KW - Dispersion KW - reduzierte Dimensionalität KW - Oberfläche KW - Nanostruktur KW - Quantendraht KW - Terrasse ... KW - electronic structure KW - electronic properties KW - dispersion KW - reduced dimensionality KW - 1D KW - 2D KW - surface KW - nanostructure KW - quantum wire KW - terrace ... Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001912 ER -