TY - JOUR A1 - Derakhshani, Shaghayegh A1 - Kurz, Andreas A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Pilgram, Lisa A1 - Steinke, Maria A1 - Kleuser, Burkhard A1 - Sauer, Markus A1 - Schneider-Schaulies, Sibylle A1 - Avota, Elita T1 - Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium JF - Frontiers in immunology N2 - Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit. KW - dendritic cell KW - cell migration KW - measles virus KW - 3D tissue model KW - sphingosine-1-phosphate Y1 - 2019 U6 - https://doi.org/10.3389/fimmu.2019.01294 SN - 1664-3224 VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Dieterich, Peter A1 - Lindemann, Otto A1 - Moskopp, Mats Leif A1 - Tauzin, Sebastien A1 - Huttenlocher, Anna A1 - Klages, Rainer A1 - Chechkin, Aleksei V. A1 - Schwab, Albrecht T1 - Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis JF - PLoS Computational Biology : a new community journal N2 - Neutrophil granulocytes are essential for the first host defense. After leaving the blood circulation they migrate efficiently towards sites of inflammation. They are guided by chemoattractants released from cells within the inflammatory foci. On a cellular level, directional migration is a consequence of cellular front-rear asymmetry which is induced by the concentration gradient of the chemoattractants. The generation and maintenance of this asymmetry, however, is not yet fully understood. Here we analyzed the paths of chemotacting neutrophils with different stochastic models to gain further insight into the underlying mechanisms. Wildtype chemotacting neutrophils show an anomalous superdiffusive behavior. CXCR2 blockade and TRPC6-knockout cause the tempering of temporal correlations and a reduction of chemotaxis. Importantly, such tempering is found both in vitro and in vivo. These findings indicate that the maintenance of anomalous dynamics is crucial for chemotactic behavior and the search efficiency of neutrophils. The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior. KW - neutrophils KW - chemotaxis KW - autocorrelation KW - zebrafish KW - cell migration KW - covariance KW - brownian motion KW - stochastic processes Y1 - 2022 U6 - https://doi.org/10.1371/journal.pcbi.1010089 SN - 1553-734X SN - 1553-7358 VL - 18 IS - 5 PB - PLoS CY - San Fransisco ER - TY - THES A1 - Michaelis, Marcus T1 - Molekulare Erkennung von Cellulose und Cellulose-Fragmenten durch Cellulose-Bindemodule & Interaktionsstudien zwischen den zytoplasmatischen Domänen von Integrin-β1/β3 und dem fokalen Adhäsionsprotein Paxillin T1 - Molecular recognition of cellulose and cellulose fragments by cellulose binding modules & Interaction studies between the cytoplasmic domains of integrin-β1/β3 and the focal adhesion protein paxillin N2 - Proteine erfüllen bei einer Vielzahl von Prozessen eine essenzielle Rolle. Um diese Funktionsweisen zu verstehen, bedarf es der Aufklärung derer Struktur und deren Bindungsverhaltens mit anderen Molekülen wie Proteinen, Peptiden, Kohlenhydraten oder kleinen Molekülen. Im ersten Teil dieser Arbeit wurden der Wildtyp und die Punktmutante N126W eines Kohlenhydrat-bindenden Proteins aus dem hitzestabilen Bakterium C. thermocellum untersucht, welches Teil eines Komplexes ist, der Kohlenhydrate wie Cellulose erkennen, binden und abbauen kann. Dazu wurde dieses Protein mit E.coli Bakterien hergestellt und durch Metallchelat- und Größenausschlusschromatographie gereinigt. Die Proteine konnten isotopenmarkiert mittels Kernspinresonanz-Spektroskopie (NMR) untersucht werden. H/D-Austauschexperimente zeigten leicht und schwer zugängliche Stellen im Protein für eine mögliche Ligandenwechselwirkung. Anschließend konnte eine Interaktion beider Proteine mit Cellulosefragmenten festgestellt werden. Diese interagieren über zwischenmolekulare Kräfte mit den Seitenketten von aromatischen Aminosäuren und über Wasserstoffbrückenbindungen mit anderen Resten. Weiterhin wurde die Calcium-Bindestelle analysiert und es konnte gezeigt werden, das diese nach der Proteinherstellung mit einem Calcium-Ion besetzt ist und dieses mit dem Komplexbildner EDTA entfernbar ist, jedoch wieder reversibel besetzt werden kann. Zum Schluss wurde mittels zweier Methoden versucht (grafting from und grafting to), das Protein mit einem temperatursensorischen Polymer (Poly-N-Isopropylacrylamid) zu koppeln, um so Eigenschaften wie Löslichkeit oder Stabilität zu beeinflussen. Es zeigte sich, das während die grafting from Methode (Polymer wächst direkt vom Protein) zu einer teilweisen Entfaltung und Destabilisierung des Proteins führte, bei der grafting to Methode (Polymer wird separat hergestellt und dann an das Protein gekoppelt) das Protein seine Stabilität behielt und nur wenige Polymerketten angebaut waren. Der zweite Teil dieser Arbeit beschäftigte sich mit der Interaktion von zwei LIM-Domänen des Proteins Paxillin und der zytoplasmatischen Domäne der Peptide Integrin-β1 und Integrin-β3. Diese spielen eine wichtige Rolle bei der Bewegung von Zellen. Dabei interagieren sie mit einer Vielzahl an anderen Proteinen, um fokale Adhäsionen (Multiproteinkomplexe) zu bilden. Bei der Herstellung des Peptids Integrin-β3 zeigte sich durch Größenausschlusschromatographie und Massenspektrometrie ein Abbau, bei dem verschiedene Aminosäuregruppen abgespalten werden. Dieser konnte durch eine Zugabe des Serinprotease-Inhibitors AEBSF verhindert werden. Anschließend wurde die direkte Interaktion der Proteine untereinander mittels NMR untersucht. Dabei zeigte sich, das Integrin-β1 und Integrin-β3 an die gleiche Position binden, nämlich an den flexiblen Loop der LIM3-Domäne von Paxillin. Die Dissoziationskonstanten zeigten, dass Integrin-β1 mit einer zirka zehnfach höheren Affinität im Vergleich zu Integrin-β3 an Paxillin bindet. Während Paxillins Bindestelle an Integrin-β1 in der Mitte des Peptids liegt, ist bei Integrin-β3 der C-Terminus essenziell. Daher wurden die drei C-terminalen Aminosäuren entfernt und erneut Bindungsstudien durchgeführt, welche gezeigt haben, das die Affinität dadurch fast vollständig unterbunden wurde. Final wurde der flexible Loop der LIM3-Domäne in zwei andere Aminosäuresequenzen mutiert, um die Bindung auf der Paxillin-Seite auszulöschen. Jedoch zeigten sowohl Zirkulardichroismus-Spektroskopie als auch NMR-Spektroskopie, dass die Mutationen zu einer teilweisen Entfaltung der Domäne geführt haben und somit nicht als geeignete Kandidaten für diese Studien identifiziert werden konnten. N2 - Proteins play an essential role in a variety of processes. Understanding these functions requires elucidation of their structure and their binding behavior with other molecules such as proteins, peptides, carbohydrates, or small molecules. In the first part of this work, the wild type and the point mutant N126W of a carbohydrate-binding protein from the heat-stable bacterium C. thermocellum were studied, which is part of a complex that can recognize, bind and degrade carbohydrates such as cellulose. For this purpose, this protein was produced with E. coli bacteria and purified by metal chelation and size exclusion chromatography. The proteins could be isotopically labeled by nuclear magnetic resonance (NMR) spectroscopy. H/D exchange experiments revealed easy and difficult sites in the protein for possible ligand interaction. Subsequently, interaction of both proteins with cellulose fragments was detected. These interact with the side chains of aromatic amino acids via intermolecular forces and with other residues via hydrogen bonds. Furthermore, the calcium binding site was analyzed and it could be shown that it is occupied by a calcium ion after protein production and that this can be removed with the complexing agent EDTA, but that it can be reversibly occupied again. Finally, two methods (grafting from and grafting to) were used to couple the protein with a temperature-sensitive polymer (poly-N-isopropylacrylamide) in order to influence properties such as solubility or stability. It was found that while the grafting from method (polymer grows directly from the protein) resulted in partial unfolding and destabilization of the protein, in the grafting to method (polymer is prepared separately and then coupled to the protein) the protein retained its stability and only a few polymer chains were attached. The second part of this work dealt with the interaction of two LIM domains of the protein paxillin and the cytoplasmic domain of the peptides integrin-β1 and integrin-β3, which play an important role in cell movement. In doing so, they interact with a variety of other proteins to form focal adhesions (multiprotein complexes). In the preparation of the peptide integrin-β3, size exclusion chromatography and mass spectrometry revealed a degradation in which various amino acid groups are cleaved. This could be prevented by addition of the serine protease inhibitor AEBSF. Subsequently, the direct interaction of the proteins with each other was investigated by NMR. This showed that integrin-β1 and integrin-β3 bind to the same position, namely to the flexible loop of the LIM3 domain of paxillin. The dissociation constants showed that integrin-β1 binds to paxillin with an approximately tenfold higher affinity compared to integrin-β3. While Paxillin's binding site to integrin-β1 is in the middle of the peptide, the C-terminus is essential for integrin-β3. Therefore, the three C-terminal amino acids were removed and binding studies were performed again, which showed that this almost completely prevented affinity. Finally, the flexible loop of the LIM3 domain was mutated into two other amino acid sequences to extinguish binding on the paxillin side. However, both circular dichroism spectroscopy and NMR spectroscopy showed that the mutations resulted in partial unfolding of the domain and thus could not be identified as suitable candidates for these studies. KW - CBM KW - cellulose-binding KW - Cellulose-Bindung KW - protein polymer conjugate KW - Protein-Polymer-Konjugat KW - focal adhesion KW - fokale Adhäsionen KW - Integrin KW - Paxillin KW - cell migration KW - Zellmigration Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-555162 ER - TY - JOUR A1 - Moldenhawer, Ted A1 - Moreno, Eduardo A1 - Schindler, Daniel A1 - Flemming, Sven A1 - Holschneider, Matthias A1 - Huisinga, Wilhelm A1 - Alonso, Sergio A1 - Beta, Carsten T1 - Spontaneous transitions between amoeboid and keratocyte-like modes of migration JF - Frontiers in Cell and Developmental Biology N2 - The motility of adherent eukaryotic cells is driven by the dynamics of the actin cytoskeleton. Despite the common force-generating actin machinery, different cell types often show diverse modes of locomotion that differ in their shape dynamics, speed, and persistence of motion. Recently, experiments in Dictyostelium discoideum have revealed that different motility modes can be induced in this model organism, depending on genetic modifications, developmental conditions, and synthetic changes of intracellular signaling. Here, we report experimental evidence that in a mutated D. discoideum cell line with increased Ras activity, switches between two distinct migratory modes, the amoeboid and fan-shaped type of locomotion, can even spontaneously occur within the same cell. We observed and characterized repeated and reversible switchings between the two modes of locomotion, suggesting that they are distinct behavioral traits that coexist within the same cell. We adapted an established phenomenological motility model that combines a reaction-diffusion system for the intracellular dynamics with a dynamic phase field to account for our experimental findings. KW - cell migration KW - amoeboid motility KW - keratocytle-like motility KW - modes of KW - migration KW - D. discoideum KW - actin dynamics Y1 - 2022 U6 - https://doi.org/10.3389/fcell.2022.898351 SN - 2296-634X VL - 10 PB - Frontiers Media CY - Lausanne ER -