TY - JOUR A1 - Curtsdotter, Alva A1 - Binzer, Amrei A1 - Brose, Ulrich A1 - de Castro, Francisco A1 - Ebenman, Bo A1 - Ekloef, Anna A1 - Riede, Jens O. A1 - Thierry, Aaron A1 - Rall, Bjoern C. T1 - Robustness to secondary extinctions comparing trait-based sequential deletions in static and dynamic food webs JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species' connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades. KW - Species loss KW - Extinction cascades KW - Top-down effect KW - Bottom-up effect KW - Stability KW - Body size KW - Trophic interactions KW - Vulnerability KW - Generality KW - Keystone species Y1 - 2011 U6 - https://doi.org/10.1016/j.baae.2011.09.008 SN - 1439-1791 VL - 12 IS - 7 SP - 571 EP - 580 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Geyer, Juliane A1 - Strixner, Lena A1 - Kreft, Stefan A1 - Jeltsch, Florian A1 - Ibisch, Pierre L. T1 - Adapting conservation to climate change: a case study on feasibility and implementation in Brandenburg, Germany JF - Regional environmental change N2 - Conservation actions need to account for global climate change and adapt to it. The body of the literature on adaptation options is growing rapidly, but their feasibility and current state of implementation are rarely assessed. We discussed the practicability of adaptation options with conservation managers analysing three fields of action: reducing the vulnerability of conservation management, reducing the vulnerability of conservation targets (i.e. biodiversity) and climate change mitigation. For all options, feasibility, current state of implementation and existing obstacles to implementation were analysed, using the Federal State of Brandenburg, Germany, as a case study. Practitioners considered a large number of options useful, most of which have already been implemented at least in part. Those options considered broadly implemented resemble mainly conventional measures of conservation without direct relation to climate change. Managers are facing several obstacles for adapting to climate change, including political reluctance to change, financial and staff shortages in conservation administrations and conflictive EU funding schemes in agriculture. A certain reluctance to act, due to the high degree of uncertainty with regard to climate change scenarios and impacts, is widespread. A lack of knowledge of appropriate methods such as adaptive management often inhibits the implementation of adaptation options in the field of planning and management. Based on the findings for Brandenburg, we generally conclude that it is necessary to focus in particular on options that help to reduce vulnerability of conservation management itself, i.e. those that enhance management effectiveness. For instance, adaptive and proactive risk management can be applied as a no-regrets option, independently from specific climate change scenarios or impacts, strengthening action under uncertainty. KW - Climate change KW - Adaptation options KW - Nature conservation management KW - Vulnerability Y1 - 2015 U6 - https://doi.org/10.1007/s10113-014-0609-9 SN - 1436-3798 SN - 1436-378X VL - 15 IS - 1 SP - 139 EP - 153 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Hagedoorn, Liselotte A1 - Bubeck, Philip A1 - Hudson, Paul A1 - Brander, Luke A1 - Pham Thi Dieu, My A1 - Lasage, Ralph T1 - Preferences of vulnerable social groups for ecosystem-based adaptation to flood risk in Central Vietnam JF - World development : the multi-disciplinary international journal devoted to the study and promotion of world development N2 - Developing countries are increasingly impacted by floods, especially in Asia. Traditional flood risk man-agement, using structural measures such as levees, can have negative impacts on the livelihoods of social groups that are more vulnerable. Ecosystem-based adaptation (EbA) provides a complementary approach that is potentially more inclusive of groups that are commonly described as more vulnerable, such as the poor and women. However, there is a lack of disaggregated and quantitative information on the potential of EbA to support vulnerable groups of society. This paper provides a quantitative analysis of the differ-ences in vulnerability to flooding as well as preferences for EbA benefits across income groups and gen -der. We use data collected through a survey of households in urban and rural Central Vietnam which included a discrete choice experiment on preferences for ecosystem services. A total of 1,010 households was surveyed during 2017 through a random sampling approach. Preferences are measured in monetary and non-monetary terms to avoid issues that may arise from financial constraints faced by respondents and especially the more vulnerable groups. Our results reveal that lower income households and women are overall more vulnerable than their counterparts and have stronger preferences for the majority of the EbA benefits, including flood protection, seafood abundance, tourism, and recreation suitability. These findings strongly indicate that EbA is indeed a promising tool to support groups of society that are espe-cially vulnerable to floods. These results provide crucial insights for future implementation of EbA pro-jects and for the integration of EbA with goals targeted at complying with the Sendai Framework and Sustainable Development Goals. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). KW - Ecosystem-based Adaptation (EbA) KW - Vulnerability KW - Gender equality KW - Poverty alleviation KW - Discrete choice experiment KW - Payment vehicle Y1 - 2021 U6 - https://doi.org/10.1016/j.worlddev.2021.105650 SN - 0305-750X VL - 148 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Klein, Daniel R. A1 - Olonscheck, Mady A1 - Walther, Carsten A1 - Kropp, Jürgen T1 - Susceptibility of the European electricity sector to climate change JF - Energy N2 - The electricity system is particularly susceptible to climate change due to the close interconnectedness between electricity production, consumption and climate. This study provides a country based relative analysis of 21 European countries' electricity system susceptibility to climate change. Taking into account 14 quantitative influencing factors, the susceptibility of each country is examined both for the current and projected system with the result being a relative ranked index. Luxembourg and Greece are the most susceptible relatively due in part to their inability to meet their own electricity consumption demand with inland production, and the fact that the majority of their production is from more susceptible sources, primarily combustible fuels. Greece experiences relatively warm mean temperatures, which are expected to increase in the future leading to greater summer electricity consumption, increasing susceptibility. Norway was found to be the least susceptible, relatively, due to its consistent production surplus, which is primarily from hydro (a less susceptible source) and a likely decrease of winter electricity consumption as temperatures rise due to climate change. The findings of this study enable countries to identify the main factors that increase their electricity system susceptibility and proceed with adaptation measures that are the most effective in decreasing susceptibility. KW - Thermal electricity production KW - Energy security KW - Heating and cooling electricity consumption KW - Vulnerability KW - Air conditioners KW - Electricity generation by source Y1 - 2013 U6 - https://doi.org/10.1016/j.energy.2013.06.048 SN - 0360-5442 VL - 59 IS - 6 SP - 183 EP - 193 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Thieken, Annegret A1 - Cammerer, Holger A1 - Dobler, Christian A1 - Lammel, Johannes A1 - Schoeberl, Fritz T1 - Estimating changes in flood risks and benefits of non-structural adaptation strategies - a case study from Tyrol, Austria JF - Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change N2 - Flood damage has increased significantly and is expected to rise further in many parts of the world. For assessing potential changes in flood risk, this paper presents an integrated model chain quantifying flood hazards and losses while considering climate and land use changes. In the case study region, risk estimates for the present and the near future illustrate that changes in flood risk by 2030 are relatively low compared to historic periods. While the impact of climate change on the flood hazard and risk by 2030 is slight or negligible, strong urbanisation associated with economic growth contributes to a remarkable increase in flood risk. Therefore, it is recommended to frequently consider land use scenarios and economic developments when assessing future flood risks. Further, an adapted and sustainable risk management is necessary to encounter rising flood losses, in which non-structural measures are becoming more and more important. The case study demonstrates that adaptation by non-structural measures such as stricter land use regulations or enhancement of private precaution is capable of reducing flood risk by around 30 %. Ignoring flood risks, in contrast, always leads to further increasing losses-with our assumptions by 17 %. These findings underline that private precaution and land use regulation could be taken into account as low cost adaptation strategies to global climate change in many flood prone areas. Since such measures reduce flood risk regardless of climate or land use changes, they can also be recommended as no-regret measures. KW - Flood risk KW - Scenarios KW - Adaptation to climate change KW - Hazard KW - Vulnerability KW - Lech catchment Y1 - 2016 U6 - https://doi.org/10.1007/s11027-014-9602-3 SN - 1381-2386 SN - 1573-1596 VL - 21 SP - 343 EP - 376 PB - Springer CY - Dordrecht ER -