TY - GEN A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Network-based flow accumulation for point clouds BT - Facet-Flow Networks (FFN) T2 - Remote Sensing for Agriculture, Ecosystems, and Hydrology XX N2 - Point clouds provide high-resolution topographic data which is often classified into bare-earth, vegetation, and building points and then filtered and aggregated to gridded Digital Elevation Models (DEMs) or Digital Terrain Models (DTMs). Based on these equally-spaced grids flow-accumulation algorithms are applied to describe the hydrologic and geomorphologic mass transport on the surface. In this contribution, we propose a stochastic point-cloud filtering that, together with a spatial bootstrap sampling, allows for a flow accumulation directly on point clouds using Facet-Flow Networks (FFN). Additionally, this provides a framework for the quantification of uncertainties in point-cloud derived metrics such as Specific Catchment Area (SCA) even though the flow accumulation itself is deterministic. KW - lidar KW - point clouds KW - stochastic filtering KW - flow accumulation KW - drainage networks KW - uncertainty quantification KW - TIN KW - DEM Y1 - 2018 SN - 978-1-5106-2150-3 U6 - https://doi.org/10.1117/12.2318424 SN - 0277-786X SN - 1996-756X VL - 10783 PB - SPIE-INT Society of Photo-Optical Instrumentation Engineers CY - Bellingham ER - TY - JOUR A1 - Wieland, Ralf A1 - Dalchow, Claus A1 - Sommer, Michael A1 - Fukuda, Kyoko T1 - Multi-Scale Landscape Analysis (MSLA) a method to identify correlation of relief with ecological point data JF - Ecological informatics : an international journal on ecoinformatics and computational ecolog N2 - A common problem in ecology is identifying the relationship between relief and site properties obtainable only by point measurements. The method of Multi-Scale Landscape Analysis (MSLA) identifies such correlations. MSLA combines frequency filtering of the digital elevation model (DEM) with an estimation of the optimum filter coefficients using an optimization procedure. Tested using point data of soil decarbonation from a German young moraine landscape, MSLA provided significant results. Implemented within open source software SAMT. MSLA is comfortable and flexible to use, offering applications for numerous other spatial analysis problems. KW - Landscape structure KW - DEM KW - Fourier transformation KW - Wavelet transformation KW - Singular value decomposition KW - SAMT Y1 - 2011 U6 - https://doi.org/10.1016/j.ecoinf.2010.09.002 SN - 1574-9541 VL - 6 IS - 2 SP - 164 EP - 169 PB - Elsevier CY - Amsterdam ER -