TY - JOUR A1 - Andrés-Delgado, Laura A1 - Ernst, Alexander A1 - Galardi-Castilla, María A1 - Bazaga, David A1 - Peralta, Marina A1 - Münch, Juliane A1 - Gonzalez-Rosa, Juan M. A1 - Marques, Inês A1 - Tessadori, Federico A1 - de la Pompa, José Luis A1 - Vermot, Julien A1 - Mercader, Nadia T1 - Actin dynamics and the Bmp pathway drive apical extrusion of proepicardial cells JF - Development : Company of Biologists N2 - The epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis, the epicardium arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium (DP) close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using a zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging, we reveal that a coordinated collective movement of DP cells drives PE formation. We found that Bmp signaling and the actomyosin cytoskeleton promote constriction of the DP, which enables PE cells to extrude apically. We provide evidence that cell extrusion, which has been described in the elimination of unfit cells from epithelia and the emergence of hematopoietic stem cells, is also a mechanism for PE cells to exit an organized mesothelium and fulfil their developmental fate to form a new tissue layer, the epicardium. KW - Actomyosin KW - Bmp KW - Cell extrusion KW - Proepicardium KW - Zebrafish KW - Heart development Y1 - 2019 U6 - https://doi.org/10.1242/dev.174961 SN - 0950-1991 SN - 1477-9129 VL - 146 IS - 13 PB - The Company of Biologists Ltd CY - Cambridge ER - TY - JOUR A1 - Haack, Timm A1 - Abdelilah-Seyfried, Salim T1 - The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis JF - Development : Company of Biologists N2 - Endocardial cells are cardiac endothelial cells that line the interior of the heart tube. Historically, their contribution to cardiac development has mainly been considered from a morphological perspective. However, recent studies have begun to define novel instructive roles of the endocardium, as a sensor and signal transducer of biophysical forces induced by blood flow, and as an angiocrine signalling centre that is involved in myocardial cellular morphogenesis, regeneration and reprogramming. In this Review, we discuss how the endocardium develops, how endocardial-myocardial interactions influence the developing embryonic heart, and how the dysregulation of blood flowresponsive endocardial signalling can result in pathophysiological changes. KW - Endocardium KW - Cardiac development KW - Hemodynamics KW - Bmp KW - Kruppel-like factor 2 KW - Vegf KW - Mechanotransduction KW - Zebrafish KW - Mouse Y1 - 2016 U6 - https://doi.org/10.1242/dev.131425 SN - 0950-1991 SN - 1477-9129 VL - 143 SP - 373 EP - 386 PB - Company of Biologists Limited CY - Cambridge ER -