TY - JOUR A1 - Melnick, Daniel A1 - Yildirim, Cengiz A1 - Hillemann, Christian A1 - Garcin, Yannick A1 - Ciner, T. Attila A1 - Perez-Gussinye, Marta A1 - Strecker, Manfred T1 - Slip along the Sultanhani Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions JF - Geophysical journal international N2 - Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhani Fault (SF), which constitutes an integral part of the Eskisehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 +/- 0.3 and 21.7 +/- 0.4 cal. kaBP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Golu and Konya palaeolakes predict only similar to 1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr(-1) for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpinar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 +/- 0.5 m estimated from 54 topographic profiles, equivalent to a M similar to 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of similar to 800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpinar might represent a larger earthquake requiring more frequent smaller events to account for the millennial rate. The relatively fast slip rate of the SF over the past 21 ka is unlikely to have persisted over longer timescales and might reflect spatiotemporal variations in deformation rates within kinematically-linked fault systems within Central Anatolia, or a transient perturbation to the local stress field or fault strength. Such perturbation might have been related to climatically controlled changes in surface and near-surface loads and by interactions among the different tectonic processes that have been proposed to drive the overall slow uplift and associated extension in the Central Anatolian Plateau. KW - Seismic cycle KW - Geomorphology KW - Continental neotectonics KW - Earthquake hazards KW - Tectonics and climatic interactions Y1 - 2017 U6 - https://doi.org/10.1093/gji/ggx074 SN - 0956-540X SN - 1365-246X VL - 209 SP - 1431 EP - 1454 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Ozsayin, Erman A1 - Ciner, T. Attila A1 - Rojay, F. Bora A1 - Dirik, R. Kadir A1 - Melnick, Daniel A1 - Fernandez-Blanco, David A1 - Bertotti, Giovanni A1 - Schildgen, Taylor F. A1 - Garcin, Yannick A1 - Strecker, Manfred A1 - Sudo, Masafumi T1 - Plio-Quaternary extensional tectonics of the Central Anatolian Plateau a case study from the Tuz Golu Basin, Turkey JF - Turkish journal of earth sciences = Türk yerbilimleri dergisi N2 - The Tuz Golu Basin is the largest sedimentary depression located at the center of the Central Anatolian Plateau, an extensive, low-relief region with elevations of ca. 1 km located between the Pontide and Tauride mountains. Presently, the basin morphology and sedimentation processes are mainly controlled by the extensional Tuz Golu Fault Zone in the east and the transtensional Inonu-Eskisehir Fault System in the west. The purpose of this study is to contribute to the understanding of the Plio-Quaternary deformation history and to refine the timing of the latest extensional phase of the Tuz Golu Basin. Field observations, kinematic analyses, interpretations of seismic reflection lines, and Ar-40/Ar-39 dating of a key ignimbrite layer suggest that a regional phase of NNW-SSE to NE-SW contraction ended by 6.81 +/- 0.24 Ma and was followed by N-S to NE-SW extension during the Pliocene-Quaternary periods. Based on sedimentological and chronostratigraphic markers, the average vertical displacement rates over the past 5 or 3 Ma with respect to the central part of Tuz Golu Lake are 0.03 to 0.05 mm/year for the fault system at the western flank of the basin and 0.08 to 0.13 mm/year at the eastern flank. Paleo-shorelines of the Tuz Golu Lake, vestiges of higher lake levels related to Quaternary climate change, are important strain markers and were formed during Last Glacial Maximum conditions as indicated by a radiocarbon age of 21.8 +/- 0.4 ka BP obtained from a stromatolitic crust. Geomorphic observations and deformed lacustrine shorelines suggest that the main strand of the Tuz Golu Fault Zone straddling the foothills of the Sereflikochisar-Aksaray range has not been active during the Holocene. Instead, deformation appears to have migrated towards the interior of the basin along an offshore fault that runs immediately west of Sereflikochisar Peninsula. This basinward migration of deformation is probably associated with various processes acting at the lithospheric scale, such as plateau uplift and/or microplate extrusion. KW - Central Anatolia KW - Tuz Golu Basin KW - orogenic plateau evolution KW - extensional tectonics KW - kinematic analysis KW - lake shoreline Y1 - 2013 U6 - https://doi.org/10.3906/yer-1210-5 SN - 1300-0985 VL - 22 IS - 5 SP - 691 EP - 714 PB - Tübitak CY - Ankara ER - TY - JOUR A1 - Yildirim, Cengiz A1 - Schildgen, Taylor F. A1 - Echtler, Helmut Peter A1 - Melnick, Daniel A1 - Bookhagen, Bodo A1 - Ciner, T. Attila A1 - Niedermann, Samuel A1 - Merchel, Silke A1 - Martschini, Martin A1 - Steier, Peter A1 - Strecker, Manfred T1 - Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides JF - Tectonics N2 - We document Quaternary fluvial incision driven by fault-controlled surface deformation in the inverted intermontane Gökirmak Basin in the Central Pontide mountains along the northern margin of the Central Anatolian Plateau. In-situ-produced Be-10, Ne-21, and Cl-36 concentrations from gravel-covered fluvial terraces and pediment surfaces along the trunk stream of the basin (the Gökirmak River) yield model exposure ages ranging from 71ka to 34645ka and average fluvial incision rates over the past similar to 350ka of 0.280.01mm a(-1). Similarities between river incision rates and coastal uplift rates at the Black Sea coast suggest that regional uplift is responsible for the river incision. Model exposure ages of deformed pediment surfaces along tributaries of the trunk stream range from 605ka to 110 +/- 10ka, demonstrating that the thrust faults responsible for pediment deformation were active after those times and were likely active earlier as well as explaining the topographic relief of the region. Together, our data demonstrate cumulative incision that is linked to active internal shortening and uplift of similar to 0.3mm a(-1) in the Central Pontide orogenic wedge, which may ultimately contribute to the lateral growth of the northern Anatolian Plateau. KW - Tectonic Geomorphology KW - Fluvial Incision KW - Surface Exposure Age KW - Uplift Rate Y1 - 2013 U6 - https://doi.org/10.1002/tect.20066 SN - 0278-7407 SN - 1944-9194 VL - 32 IS - 5 SP - 1107 EP - 1120 PB - American Geophysical Union CY - Washington ER -